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Chapter 1

The Minimal Restaurant

Let’s look at a “minimal restaurant” consisting only of a single table as a first
system to analyze. Assume it can serve only a single group of customers at a
time, with a maximum of n people in this group (the size of the single table).
So if there’s already a group dining, no others can be accepted; if the table is
free however, the waiters may assign it to a new group of customers to their
liking.

The opening hours of a single business day (the unit we look at) are defined
via an interval of two times, tpegin < tend-

In order to simplify the rules even further, we assume that time is dis-
cretizised in intervals of length At. This means that the time to serve a group
is always a multiple of At and also that new groups can only be accepted at
times ¢; = tpegin + tAt, if they have entered the restaurant in the preceding
time interval, because the waiters only look from time to time at the entrance
to pick up new groups that may be looking for a table. This, however, is not
that unrealistic, given that a real group of people seeking a table in a restaurant
is not going to find one and sit down in “zero” time but this also takes some
finite duration.

At each of these times t; whenever the table is currently free, the waiters can
choose one of the groups that have entered during the last interval and assign
them the table. The other groups, however, have to be sent away. If the table
is occupied, everyone entering has to be sent away immediatelly, too. So it is
not allowed to have customers wait for the currently served group to finish, and
it is also not allowed to place a second group at the single table (even if there
would be enough seats!).

All the waiters know about groups when choosing the one to pick is the
number of people m it consists of, so there’s no nothing to suggest if a particular
group “looks like” giving high or low tips. While more people of course are more
likely to give a large amount of money, they usually also take longer to serve.
Let g, be the expected amount of tips for a group of size m and d,, At be the
length of time it will occupy the table.

As a consequence, if there are more than one groups of the same size waiting
forthe table at any time, the waiters can simply discard all but one because
they are identically from their point of view. Because of this, we’ll further on
without loss of generality assume that at most one group of size m is waiting
for the table (but there may be none).



Based on these very restrictive assumptions, we can work out a quite “gen-
eral” model (and algorithm to pick the best strategy) using a bottom-up ap-
proach.

1.1 Finding the best strategy

For each of the grid points ¢; in time, we define X (¢;) to be the expected winning
on tips for the waiters from time t¢; onwards until ¢.,4, under the condition that
the table is free at ¢; (and may be assigned to a new group right away), assuming
the best possible strategy picking groups of customers.

If this function X is known, it is easy to decide for each time t;, if there are
multiple groups waiting, which one to pick: If the waiters decide for the group
of size m, the expected winnings will be g, + X (¢t; + d,,); if they decide to wait
for other groups to enter during the next interval, they will be X (¢; + At). Then
one simply has to evaluate all those possibilities (choosing each group or none
of them) and pick the move with highest expected tips.

Calculating X is, however, nearly equally easily done (because the time
is discrete). If we define p,,(t) to be the probability that a group of size m
enters during a single time interval around time ¢ (because it may be higher on
evenings, or in general time dependent), it follows from the proposed strategy
above that:

X (t;) = max (X (t; + At), {gm + X(t; + dm) |m € G}) (1.1)

where X (t) = 0 for t > tenq and G is the set of group-sizes waiting at time ¢;.
Notice that we assume the restaurant’s team will continue to serve the group
currently present even if ¢.,,4 gets exceeded (but not accept a new one after that).
We could of course exclude groups where t; + d,;, > teng from the choices, but
not doing so will be consistent with the next section and making the duration
into a random variable so that it is not anymore easily predictable if a group
will exceed te,q or not. Additionally, this also seems to reflect the reality quite
good...

There are 2™ possibilities to consider, as for each 1 < m < n a group of size
m can have entered (with possibility p,,(¢;)) or not (possibility 1 — p,,,(¢;)). So
the final relation for X (¢;) is given by weighting (1.1) for all those possibilities
with their respective probabilities (and G defined approprietelly):

Zp max (X (t; + At), {gm + X(ti +dm) |m € G(¢)}) (1.2)
qeP

with P = {0,1}"™ being the set of possibilities,
H (g;p;(t (L —q;)(1 —p;(ti)))
the probability of possibility q=(q1,--,qn) € P occuring at time t;, and

G(q)={1<j<nl|qg =1}

the set of groups waiting for possitibility q.



Using this relation between X (¢;) and X at later times, one can easily cal-
culate the function X for all time points using the dynamic-programming tech-
nique (starting at t.,q and working backwards in time), because there’s only a
finite number of time points to find X at.

1.2 Random variables and distributions

Above, we assumed that both the tips earned from a particular group as well as
the time to serve one group is simply a constant (depending only on the group’s
size m); this, however, won’t reflect how real situations are very well. In reality,
both of these values are quite randomly distributed as not everyone gives the
same amount of tips and not everybody takes the same time to finish dinner.

Therefore, we want to generalize both of them to be random variables with a
given distribution instead of simply scalar constants. Let gm, : [0,00) — [0, 00)
be the probability density function for the distribution of tips earned from a
group of size m, and dp, : {kAt |k € N} — [0, 00) be the distribution probability
function for the duration to serve a group of size m.

Then, we want to find X(¢;) as the probability density function of the earned
tips from time t; onwards when choosing best, as above. Each “value” of X is
now however a complete random variable with density function instead of a
single value.

1.2.1 Distribute the tips given

From statistics it’s known that the density function fx,, for two independent
random variables x and y is given by their density functions fy and f, respec-
tively as:

fuiy(z) = /OO fu(2)fy (2 — s) ds (1.3)

— 00
We will not show that these are really correctly normed density functions
and thus the sum of two random variables again a random variable when defined
as above.
Using this formula for the expressions g,,+X (¢;+d,,) one can easily translate
(1.1) to random variables. Instead of the maximum function we take the random
variable with highest expected value:

maxV = w for (w) = max {(v) |v € V} (1.4)

where (v) = [*_sv(s)ds is the expected value of the random variable v. For
t > tena, we take X(t) = Jp to be the delta-distribution for 0.

If there’s no uniquely defined element with strictly maximal expected value,
any of the random variables with maximal expected value should be fine. With
this definition, it’s clear that the maximum of (at least a finite) set of ran-
dom variables is again a well-defined random variable together with a correct
probability density function.

Finally, assume we’re doing a random experiment with n possible outcomes,
each with probability p;. Depending on the result, we pick a value according
to some probability density function d;. It’s quite intuitive to take the overall
probability density function for the resulting random variable to be:



f(z) = Zpidi(z) (1.5)

Taking together (1.3), (1.4) and (1.5), we can now formulate (1.2) using
random variables for all tip-earning to get X(¢;) itself as random variable dis-
tribution.

1.2.2 Non-constant serving times

In order to generalize the service duration to a non-constant (that is, randomly
distributed) value, we need a concept of discrete random variables here (because
time is discretizised). Let dm : {kAt|k € N} — [0,00) be a function with
> ken dm(kAt) = 1. Then dp, describes the time to serve a group of size
m, such that for any given group d,(kAt) gives the probability that it will
take kAt to serve it (other time durations are not possible!). Additionally, we
require that dy,(nAt) =0 for all n > ng and some ny € N; it’s clear that for
our purpose durations can not get infinitly long, and thus this condition can
well be accepted.

We then can rewrite the subexpression X (¢; + d,,) of (1.2) to use the dis-
tributed duration d,, instead of the constant one; to sum over the possible
durations with associated probabilities, we can use (1.5) again.

This leads us to the final relations describing X(t;) and the best strategy, using
randomly distributed tips and durations:

X(t:)(z) = Y p(a)b(a)(2) (1.6)

qeP

where p and P are defined as for (1.2), and b(q) is a random variable given as:

b(q) = max (X(t; + At), {gm + X(t;,dm) |m € G(q)})

with G(q) as for (1.2), the maximum-function interpreted as the one described
n (1.4) for random variables, and

X (ti,dm)(2) = Y _ dm(kAH)X (t: + kKAL) (2)
keN

These expressions are all well-defined because both sums are finite (P is
finite by itself and per requirement d,, gets zero above some defined duration)
and also the operations sum (1.3) and maximum (1.4) of random variables are
well-defined.

We’ll now show that all entities stated to be random variables really have
an appropriate density function satisfying ffooo f(z)dz=1:

For any ¢; and duration distribution dy, (with requirements as above) we
have:



/ h X (ti, dm)(2) dz / > dm(kAH)X(t; + kAt)(2) dz

> © keN

de(kAt) / h X (t; + kAt)(z) dz
k=0 —o°
D dm(kAt) =

keN

Then also all gy, + X(ti,dm) are random variables with correct density
functions, and also b(q) as their maximum (the sets G(q) are finite). Finally
we get:

/_D;X(t‘)(z)dz :/ > plab(@)(z)dz =Y p(g / (q)(z) dz

o qepP qeP

> plg) =

qeP

This last equality is shown by induction over the table-size n. For n =1 we
have:

> plg)

qeP

p(0) +p(1)
Op1(ti) + 1(1 — p1(t:)) + 1pa(ti) + 0(1 — pa(ts))
= 1—-pi(t;) +p(ts) =1
Assume now the equation holds for n (let P, and p,(¢q) be the corresponding

n-sized possibility set and associated probabilities) and we show it then also
must hold for n + 1:

> panile) = > Pnt1(d:4)

qEP, 11 (ti,q')EPn X{O 1}
= Z pn 1 _pn-i-l Z pn pn-i-l ))
qeEP, qeP,
= Z Pn(@) (1 = pnta(ts) + pny1(t:) =1
Gger,

So finally we know that our relations in (1.6) describe well-defined random
variables, and we also tried to make clear why we believe these in particular
relate to the best possible strategy.

1.3 A bit of reality

As a next step, we're going to think about real values and distributions to use
for our formulas in order to bring them as close to reality as possible for our



actual simulations. We chose to use hours as unit for time-measurements and
Euros as unit for monetary values (tips, that is). Then we assumed these values
for our time-frame:

thegin = 9.00
tena = 23.00
5
At = —
60

The size of the single table is fixed at 4 persons.

1.3.1 Tips

Tips are naturally very widely distributed, with some people giving hardly any-
thing and others being very generous. For groups of multiple people, the tip
payout seems to be pretty proportional to the group size; this is true both when
a single person pays for all or each one for herself. Thus we assume a Gaus-
sian distribution for the tips gm, which is of course clipped to exclude negative
amounts and re-normalized accodingly:

_ 0 z<0
BT Lo (3 (5)%) =20
gm(2)
8mlz oo~ /N 1
=) 7 gm(y) dy

uw = 1.00
c = 0.0

Another possibility would be to construct a distribution function that is
naturally asymmetric so that it falls down for amount towards zero faster and
for amount greater than the mean value more slowly in order to resemble the
minimum amount of no tips at all as well as some people giving two or three
(and even more) times the mean value. We think, however, that this clipped
Gaussian distribution describes quite well what an actual distribution might
look like.

1.3.2 Durations

For the duration distributions (depending on the group-size m) we concluded
this empirical relation for the mean duration, depending on the time of day:

15+ 25m for ¢ > 18.00
60u(t) = ¢ min(15+ 15m,45) for t € [12.50,13.50]
15+ 156m otherwise

604(t) is the duration in minutes, of course. The first case means that on
evenings, people usually take more time for dinner than they would spend eating
their meal at other times of the day, while the second should handle employees’
lunch-breaks where we assume a maximal duration of 45 minutes (not only for
the mean duration, see later).
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Figure 1.1: One of those tip distributions

It may be quite astonishing, but experience shows that there’s not much
variation in these durations (e.g. restaurants really put reservations in a tight
schedule but it works out); because of this, we assume the standard deviation
to be only o = %.

With these nominal values, again a Gaussian distribution is assumed; as
for the tips, we cap this distribution for negative durations and normalize ac-
cordingly. In addition, for the lunch-break time-frame we also cap it above 45
minutes.

Finally, in order to map these continuous distributions to our discrete time
grid, we simply pack “duration probabilities” to their nearest time-point ;.
Let d, be the continuous Gaussian distribution as described above. Then the
discrete duration distribution d,, we require is defined as:

kAt+5E
dm (kAL) :/ dm(2)dz

At
EAt—4&t

1.3.3 Group probabilities

For the probabilities p,, of groups entering, we first decided on a relative ratio
of the group-sizes themselves. Our assumption is that groups of 2, 3, 1 and 4
persons will make up 40%, 30%, 20% and 10% of all groups.

That is, for some total rate ¢ of groups entering, we have these values for
OUr Pyt

p1 = 0.2¢, p2 = 0.4q, p3 = 0.3¢q, ps = 0.1¢
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Figure 1.2: Duration for lunch-time

We do not yet, however, fix an absolute value of gq. As the rate of possible
customers will play a significant role for analysing our method, we will run
simulations using different values.

1.4 Results

Finally, we implemented our method to both predict a distribution of tips using
the arithmetic with random variables (approximated by a table numerically) and
handle a real simulation using our strategy. For the simulation, we randomly
“worked” for 50.000 days and generated a histogram of tip earnings; both the
predicted curve and real histogram can then be compared.

While this of course is not a prove for “optimality” of our decision method,
we’ll see that our prediction matches the simulation pretty well, so at least our
theory fits our assumptions and our implementation seems correct. This means
that it really capable to make predictions, and so the decisions based on our
model should be accurate.

We did however also simulate 50.000 days where the waiters always “mis-
decide” rather than follow our strategy. But that does not mean sending away
groups (which is of course a quite fatal error), but misdecision only means to
pick (another) group if there are several to choose from or if the best option
would be to send all groups away. Comparison between the simulation results
for our strategy and the misdecision simulation should reveal that we really
advise the right thing.
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Figure 1.3: Tip distributions in theory and simulation for low customer rate

1.4.1 Low group rate

For the first simulation presented here, we assumed the group-rate ¢ (see 1.3.3)
to be ¢ = 0.1. That means, we expect a fresh group roughly every 50 minutes.
This corresponds to a fairly low rate. Consequently, during the simulations no
group is sent away in hope for a better one to come soon.

Our theory predicts the expected value of the tip distribution (for one day)
to be 22.74 Euro, whereas the mean earnings over the simulations were 22.57
Euro. So here’s a quite good match. The resulting curve shows a roughly
Gaussian distribution of the expected tips, and also a very good match between
theory curve and histogram.

The earnings for misdecisions are 22.09 Euro, so a little inferior to using
our strategy, but not much in this case (as there’s rarly the chance to decide
any different when usually no groups are send away anyways and there aren’t
often multiple groups waiting).

1.4.2 High group rate

In contrast, ¢ = 2 means that even more than one group is expected each 5
minute time step (for instance, the probability that a group of 2 persons enters
is 80% per time step). Here, the predicted average tip earnings are 47.99 Euro
while the mean of the simulation is 47.72 Euro. So our model fits quite well
even for large amounts of possible customers.

The mean earnings when misdeciding are 38.06 Euro, so here’s quite a
difference between our strategy and not following it!

The theory curve shows some small “oscillations”, see 1.4.3 for an explana-
tion of those. But overall, we once again get a bell-shaped curve and histogram,
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Figure 1.4: Tip distributions in theory and simulation for high customer rate

and both match as before.
For a customer rate that high, we can also observe some interesting (but
quite plausible) decisions. Here’s the log for one of our simulated days:
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13.33: Groups are waiting:
2
13.33: We chose 0, best is O.
13.42: Groups are waiting:
1, 2, 3
13.42: We chose 3, best is 3.
14.17: It took 0.75 and we earned 2.99.
14.17: Groups are waiting:
2, 3
14.17: We chose 3, best is 3.
15.25: It took 1.08 and we earned 4.85.
15.25: Groups are waiting:
1, 2, 3
15.25: We chose 3, best is 3.
16.25: It took 1.00 and we earned 1.38.
16.25: Groups are waiting:
2, 3
16.25: We chose 3, best is 3.
17.33: It took 1.08 and we earned 0.78.
17.42: Groups are waiting:
2, 3
17.42: We chose 3, best is 3.
18.25: It took 0.83 and we earned 5.72.
18.25: Groups are waiting:
3, 4
18.25: We chose 4, best is 4.
20.17: It took 1.92 and we earned 2.93.
20.17: Groups are waiting:
1, 3
20.17: We chose 3, best is 3.
21.67: It took 1.50 and we earned 6.18.
21.67: Groups are waiting:
2, 3
21.67: We chose 2, best is 2.
22.75: It took 1.08 and we earned 2.11.
22.75: Groups are waiting:
2
22.75: We chose 0, best is O.
22.83: Groups are waiting:
1, 2
22.83: We chose 0, best is O.
22.92: Groups are waiting:
1, 2, 3
22.92: We chose 3, best is 3.
24.58: It took 1.67 and we earned 1.82.
24.58: Closing. Total tips today: 51.35.

Beware that all times are coded as fractional hours, so 13.50 would mean

“half past 1 pm” rather than 13:50! Choosing group 0 means to send away all
and wait for better ones to show up.
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It is easy to see that in general, larger groups are preferred. Tips are pro-
portional to the group size, whereas the duration also has a fixed offset and thus
the tip-to-duation ratio is better for larger groups.

Generally, it seems that groups of size 2 or less are send away, while groups
of size 3 or larger are accepted for this scenario. However, there are some
irregularities:

At 12.50, even a group of size 3 is dismissed; that’s probably because that’s
already in the noon-timeframe where all durations are capped at 45 minutes.
Because of this, a group of 4 persons gets even more attractive, as its tip-to-
duration ratio is even higher (as the longer duration is capped away). So for
lunch, even larger groups are clearly advantageous. This gamble was successful,
as b minutes later at 12.58 a group of 4 can be served. At 13.42 however, after
this time-frame is over, the group-size of 3 is happily accepted again.

The next interesting thing happens at 21.67, when 2 is preferred over 3.
The explanation for this behaviour is probably that we’re nearing 23.00, when
the restaurant will close, and with a group of 3 we risk already running over
time, while 2 ensures we can still accept a group after finishing that one off.
This happens at 22.75 shortly before closing, and then we once again wait for a
larger group by sending away the small ones; only at the very last moment at
22.92 the final group is accepted, and served over time (as our rules allow), so
the available hours are used as excessively as possible.

1.4.3 Stress-testing the model

For some special (unrealistic) parameters one can make another interesting ob-
servation that shows a good fit between our theory and the simulation results. If
the restaurant’s table size is assumed to be 1 (effectively only allowing 1 person
groups of course), ¢ = 0.5 and the standard deviation for tip distributions is
reduced to 5 cents (so a very narrow distribution), the graph below results.

Our theory predicts 10.85 Euro while the simulation mean is also 10.85
Euro (in fact, half a cent higher). For misdecisions we get 10.86 Euro, but
that’s not astonishing as there’s nearly no room for any misdecisions at all in this
situation, and it was by chance one cent higher than the previous simulation.

Really interesting, however, is that the tip distribution is no longer approx-
imately Gaussian but rather has a lot of peaks (in fact, a trend to this form is
already found in 1.4.2)!

In close examination, one finds that the distance between two of those peaks
is 1 Euro which corresponds to the tips given by one “group”. So each peak
corresponds to a certain number of groups that could be served during a day
(the central one to 11, for instance). Because the tip distribution is that narrow
now and because also only one specific type of group is allowed, these cases are
clearly distinguished from each other. Note that we did not change the service
durations, but they were already fixed to a narrow distribution!

We find that even this special case is predicted well by our model and im-
plementation, as an additional “stress-test”.

12
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Chapter 2

Multiple Tables

As a single table is not very exciting, we wanted to extend our model to a
restaurant containing multiple tables, probably of varying sizes. We thought
about different ideas on how to model this new situation, and while a bottom-
up approach similar to the one table case would in theory be possible (see 2.1),
we concluded that it was not practical for our purposes (and the way we thought
about it).

So we decided to go a top-down way this time, making some assumptions
and trying to get a sensible strategy out of it that would test reasonable in
simulations. In fact we ended up both with a very simple approach and a more
sophisticated one that is based on reducing the multiple table case to multiple
single-table cases as we already solved them.

2.1 Brute-force analysis

If we leave time discretizised, once again we could try to calculate an expected
tip distribution for all possible “situations” that might occur during a day, where
a situation is characterized by current time of day, the occupied and free tables,
and finally the remaining dining time for all those tables that are currently in
use.

As there’s a finite number of time-steps T = %, a fixed number of
tables anyways and also an upper bound and thus finite number of discretizised
durations, say D, one can estimate the number of states of this “system” as T'D™
and thus get at least a finite number. So it is in theory possible to work out
relations and a dynamic programming method just as for the single-table case.
This, however, will become computationally intensive soon, as D is rather large
and for a non-trivial number of tables the factor D™ grows rapidly. Because of
this problem, we don’t think this can be practically implemented directly, and
thus we did not further consider this method.

2.2 Probabilities of groups appearing
Before we start practical work on the multiple-table problem, we have to re-

think our approach specifying how groups of people enter the restaurant. For a
single table, we were only interested if at least one group of size m has entered

14



in the last time-interval, and did specify the probability for this event to be
pm (and we assumed some “realistic” values for these probabilities, but they
themselves were simply parameters).

For multiple tables, we also want to know how many groups of a given size
did exactly enter. For this, we’ll use a discrete random variable distribution
Pm (k) giving the probability that exactly k groups of size m will enter (k € N).
This is similar to our specification of serving durations in 1.2.2.

We require these properties of the distributions in order to be well-defined
for our purpose and additionally reflect the fact that the probability for at least
one group is already defined to be p,, (for sake of consistency):

VekeN : 0<pm(k)<1
D pmlk) = 1
keN

Z pm(k) = DPm
k=1

Of course there are many ways to choose a distribution satisfying the basic
requirements, but we want to motivate a special choice. It’s probably a good
assumption that there are “lots” of possible groups around, and each of them
independently chooses to visit our restaurant. Let there be n such potential
groups and let p € [0, 1] be the probability that each of these groups chooses to
visit our restaurant. It’s clear that the probability of at least one group entering
is then given by p,, =1 — (1 —p)" and thus

p:]-_ ”\L/]-_pm

Then, for the distribution values p& (k), we have to apply the Binomial
distribution:

R O R e O [ e

Because we assume that n is very large (that is, a nearly infinite pool of
possible customers in the city), we’ll take the limit n — oo to arrive at the final
resulting distribution pm(k):

Pm(k) = lim pp,(k)
= lim ( . ) (1= /T pn)* (1 —pm)=

1—pm lim nn—1)---(n—k+1)
L—pm o PP 0

7! 1m "
! n— 00 (1 _ m)

after expanding the binomial coefficient and for some sufficiently defined a;.
We'll see soon that the limit taking into account the constant term of the
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numerator polynomial is a finite number, and thus all limits containing the
other factors -+ will be zero and left out of consideration from now on. Using

I’Hopital’s rule, one can finally show the existence and value of this limit:

_ -1 —k
Pm(k) = L= om lim ( - )

N|>~

L—pm [ = -
= lim -
B\ “exp (loa(1 — po) 1) log (1 — i) (72)

1- m .
= k'p < lim —exp (log(l — Dm) ) log(1 — pm))
So, the distribution we’ll choose for groups of size m entering our restau-

rant — according to our assumptions of a mass of potential groups deciding
individually — is:

3|
>

= P (Clog(l - p)

Dun(k) =~ (~log(1 — )" (21)

But still it does not matter for our purpose how many groups exactly entered
as long as their number is already larger than the count of available tables
overall. Because of this, we later need to know the probability that at least s
groups of some size entered, and this is given as:

0 k
Pm(>s) = me (1= pm) Z (_bg(lk;l_ pm))
k=s :
= (1—pm) i _10g1—pm § —10g1—pm)) )
k=0 o

s—1 k
67 IOg(lfp'm) . (_ 1Og(]‘ B pm)) )
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I
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—
|
=
3
S~—
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In particular, one can verify that p,(> 0) = 1 as required for a random
variable distribution, and this result could also have been obtained by using the
complement probability for the values k=0, ..., s — 1.
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2.3 Tip to duration ratio

If we dismiss sending groups away despite leaving a table empty (because we
could want to save it for a “better” group that is likely to come soon), which
seems like a good assumption at least if the probabilities for groups to appear
are not too high and which also reflects how things are in reality, we can rate
possible customers (or groups thereof) by their “tip to duration” ratio r, (for
groups of size m):

(m)

" (d)
i.e. the expected amount of tips per time-unit that we’ll have to spend for
serving them.

Then, if a number of groups is waiting and some tables are free, we’ll place
that subset of the groups to some of the empty tables that gives the maximum
sum of tip-to-duration ratios, but without further considerations.

One can easily verify that the obvious Greedy Algorithm works for this task:

1. Pick waiting group of size m such that r,, is the maximal ratio for all
groups available.

2. If there’s no free table of size at least m (that is, large enough) dismiss it
and repeat step 1 for next group; otherwise, place the selected group at
the smallest free table that has enough seats.

3. Repeat with step 1 until no longer any groups are waiting.

This gives the “optimal” strategy with our restrictions for this “top-down”
approach.

We would also like to predict the expected tip random variable as we did for
the single-table case, but unfortunately we can not simply apply the method
described here together with the techniques in 1.2 to do so, because of the same
problems described above regarding the brute-force method; namely because the
search space of all possibilities gets by far too large in the multi-table case. This
means that there’s no direct and practical approach to finding the distribution.
But for one table, this distribution itself was the basis for our decision strategy,
and here we already do have the method, so the distribution is nothing totally
necessary.

2.4 Reduced probabilities

If we considered the multiple-table case in such a way that for each table there
would be a seperate queue of people, it would obviously be simply multiple
times the single table in parallel; the difficulty is of course that this is not how
it works in reality, but there’s “a single queue” of people interested in a table
for the whole restaurant, and in the new case it is shared among multiple tables.

For multiple tables, sending away groups is obviously less useful than for
the single table case, because there’s simply more capacity to handle them; and
even if we hope for a better group the next round, accepting another group may
be better than sending it away because there’s still some table free for the larger
group when it shows up.
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This leads to the idea that we could try to adapt the single-table strategy
to multiple tables by preventing this type of problem: For instance, when there
are two tables, each table is used for roughly half of all groups (and each table
can expect about half the group rate to be “its” customers). So we could simply
use the single-table strategy for each table, but do all calculations with reduced
group-probabilities p,, (in fact %: where r,,, is some reduction factor).

As we already did in 2.3, it’s probably best to fill free tables from smallest
to largest (because a small table for some group — if sufficient — safes us the
larger tables for larger groups). So for a given choice of reduction factors r,, we
get this strategy:

0. For each table i of size n in the restaurant, calculate X;(t) using 2= as the
group probabilities and n as “the” table size with the single-table method
described above. This step is preparation and can be done once before

the actual decisions have to be made.

1. Go through all free tables from smallest to largest and for each one and
the waiting groups, use the single-table decision method together with the
already calculated X; function for this table to pick a group (or leave the
table empty).

2. Repeat the last step until for each table still free the decision is to leave
it empty. Then send away all remaining groups.

Finally, we present three possible methods for defining the reduction factors
themselves:

No reduction The simplest strategy is to do no reduction at all, that is r,,, = 1
for all m.

Table count reduction Define r,, to be the number of tables with at least
m seats (that is, for a given group size reduce its rate by the number of
tables capable of handling it).

In order reduction As before, but let r,,, be the number of tables for at least
m people, that will additionally be tried before the currently calculated one
or are the current table. That is, for the first table tried (the smallest one)
do no reduction at all, for the second in order reduce as if only that two
tables were present, and so on.

For the special case of only one table, this method degrades (regardless of the
chosen reduction strategy) to the same as for the real single-table case (because
it is based on that strategy of course).

Note that here we could also try to estimate the expected tip distribution by
taking all single-table estimations for all tables and summing them (as random
variables). But this does not give the right estimation in general (too low for
reduction and too high for no reduction); this trick of probability reduction
works quite well for finding the right decisions (as we’ll see later), but it gives a
wrong absolute estimation.

The three reduction strategies described are of course not all possible meth-
ods, and in fact there may well be some reduction, that is somewhere “in be-
tween” no reduction and the other two strategies, and could even lead to a
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Strategy Runl Run 2 Run 3
Tip-to-duration ratio | 426.80 426.84  426.99

No reduction 424.54  424.45  424.63
Table count reduction | 426.95 426.88  426.81
In order reduction 429.41  429.37  429.24
Inverse order 427.13  427.04  427.16

Table 2.1: Multi-table results for different strategies

good fit between the resulting estimation and histogram, and/or better results
than all three of our methods. But those are all we found plausible and tried
ourselves so far.

2.5 Results

Once again, we tried our methods with some simulations (each run consisted
now of 100.000 days simulated in our restaurant). We assumed the distributions
already described in 1.3, but of course took into account our results for group
appearance probabilities from 2.2. We chose ¢ = 2 as the overall group rate to
get quite some customers in order to fill our larger restaurant. Finally, in the
simulations our restaurant had a total of 10 tables with three 2-person ones,
two 3-person tables and the final five tables for 4 persons.

All resulting histograms showed a bell-shaped distribution (to no surprise of
course), and all tested methods produced nearly, but not fully, the same mean
tip earnings. We did each simulation three times in order to get some very
rough idea of the statistical fluctuation.

The first nice thing to notice is that the resulting tips are now a little less
than ten times those for a single table with ¢ = 2 (50 Euro) — this is consistent
with that we now have ten tables, but some smaller than 4 persons and also of
course the same customer rate to fill ten tables now instead of only one; but
overall, the numbers look plausible.

Notice also that the statistical differences between the three runs of a sin-
gle method have a span of about 20 cents, which we’ll take for a very rough
approximation of the statistical error of our simulations.

Although at least the tip-to-duration strategy is fundamentally different to
either probability reduction, all methods give largely the same return; this is a
good consistency check that we’ve gotten “near” to some “best” strategy, despite
the fact that all methods here are only based on “reasonable” assumptions and
are of a top-down nature.

There are, however, some small differences between the simulated methods;
and those differences are of single Euro order, so only within one percent of
the total sum, but also larger than the statistical error, and thus mean real
qualitative differences between the methods.

Probability reduction method with the no reduction strategy performs poor-
est, tip-to-duration and table count reduction perform better and quite similar
to each other, and the most sophisticated in order reduction gives the best per-
formance. “Inverse order” finally is an in order reduction, but here the tables
are ordered largest to smallest (that is, in the opposite direction); this gives a
worse result, so the order is really (a little) significant.
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But all in all, we get the impression that all of our empirical methods for
multiple tables probably work quite well (and are thus already close), although
there are real differences. Also quite interesting is our finding that the “most
obvious” method, namely tip-to-duration ratio, is slightly outperformed by in
order reduction and thus not optimal. And here our prior analysis of the single-
table case together with the probability reduction trick did help us find a better
strategy.
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