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Abstract

We consider the level sets of distance functions from the point of view of geometric measure
theory. This lays the foundation for further research that can be applied, among other uses, to
the derivation of a shape calculus based on the level-set method. Particular focus is put on the
(n − 1)-dimensional Hausdorff measure of these level sets. We show that, starting from a bounded
set, all sub-level sets of its distance function have finite perimeter. Furthermore, if a uniform-density
condition is satisfied for the initial set, one can even show an upper bound for the perimeter that
is uniform for all level sets. Our results are similar to existing results in the literature, with the
important distinction that they hold for all level sets and not just almost all. We also present an
example demonstrating that our results are sharp in the sense that no uniform upper bound can
exist if our uniform-density condition is not satisfied. This is even true if the initial set is otherwise
very regular (i. e., a bounded Caccioppoli set with smooth boundary).
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1 Introduction

Regularity of level sets is a wide and interesting field. This can be seen already in the context of the classical
Sard theorem and the co-area formula (see page 112 of [11]). For recent work in this direction, let us refer to [1].
In a more specific context, we are interested in the (n − 1)-dimensional Hausdorff measure of the level sets of
distance functions:

For some open set Ω0 ⊂ Rn, the distance function is given by

dΩ0(x) = inf
y∈Ω0

|x− y| .

This is a widely studied construct with well-known properties. See, for instance, Chapter 6 of [9]. In particular,
note that dΩ0(x) is well-defined and non-negative for all x ∈ Rn. Furthermore, the function dΩ0 is continuous on
Rn and dΩ0(x) = 0 for all x ∈ Ω0. For t > 0, let us also define the level sets

Ωt = dΩ0

−1 ((−∞, t)) = {x ∈ Rn | dΩ0(x) < t} and

Γt = dΩ0

−1 ({t}) = {x ∈ Rn | dΩ0(x) = t} .
(1)

Continuity of the distance function implies that Ωt is open and Γt closed. It is also easy to see that Γt coincides
with the topological boundary of Ωt, i. e., Γt = ∂Ωt. The set Ωt is sometimes called the t-envelope of Ω0 in
the literature. It is an inflated and smoothed version of Ω0. The study of the surface measure Hn−1(Γt), which
corresponds roughly to the perimeter P (Ωt), is naturally connected to surface flows. This situation was studied
by Caraballo in [7] and can be directly motivated by the famous paper [2] of Almgren, Taylor and Wang.
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Our main results are very similar, but they differ in one important aspect: They do not depend on the co-area
formula. Consequently, they hold for all level sets and not just almost all. To highlight a particular use of this
improvement, let us briefly mention the classical level-set method introduced by Osher and Sethian in [15]: Based
on this method, one can describe evolving shapes as the sub-zero level sets of a time-dependent level-set function.
If the geometry is changed by moving the boundary in the normal direction according to a given speed field,
the time evolution of the level-set function can be described by the so-called level-set equation. Based on this
method, one can, for instance, build a framework for shape optimisation as done in [5]. See [10], [6] and [14]
for some recent applications. Our work in [13] allows us to represent the propagating domains in the level-set
framework with a formula similar to (1). In the general case, one uses the solution of an Eikonal equation instead
of the distance function dΩ0 . The situation considered here is a special case, which results if the speed field is
positive and constant throughout all of Rn.

In this framework, one can also perform shape-sensitivity analysis. The resulting shape derivatives are directly
connected to the perimeter of Ωt and, a-priori, defined only for almost all t ≥ 0. For the analysis of optimisation
methods based on these derivatives, it is important to consider the ability to continuously extend the shape
derivatives to all times t. Consequently, it is important to ask the question of continuity of the perimeter P (Ωt)
with respect to t. One half of this question can be resolved quite easily by the well-known lower semi-continuity
property of the total variation. This, in turn, implies lower semi-continuity for the perimeter of the evolving sets.
Estimates in the other direction, however, are more difficult to obtain. In particular, we need upper bounds for
P (Ωt) that are not restricted by an almost-all qualification in t. While this paper can not give a full continuity
result, we are, indeed, able to improve upon the existing results in [7] in this direction. With the developed
technical tools, it may be possible to prove continuity of the perimeter in a future work.

In Section 2, we give an example that demonstrates that blow-up of the perimeter of Ωt can happen for t→ 0+

even if Ω0 is a smooth Caccioppoli set. After investigating some auxiliary geometric properties of spherical sectors
in Section 3, we will derive our main results in Section 4. The first is a kind of inverse isoperimetric inequality
(see Theorem 3), that gives an upper bound on the perimeter P (Ωt) of Ωt in terms of the created volume Ωt \Ω0.
An obvious estimate of this volume follows if Ω0 is bounded, which results in Corollary 1. Note, however, that
this only yields an upper bound for P (Ωt) that diverges like 1/t for t → 0+. This matches our observations in
Theorem 1. Under an additional uniform-density assumption on Ω0, we can further improve the estimate: In this
situation, the volume can be bounded in terms of the perimeter of the initial domain Ω0 times t. Consequently,
we obtain a uniform bound on the perimeter of Ωt. This will be done in Subsection 4.2. Subsection 4.3 discusses
our uniform-density condition in comparison to related geometric properties in the literature. We will see that
it is strictly weaker than the uniform cone property, and a sufficient condition for the finite density perimeter
introduced by Bucur and Zolésio in [4]. Note that our main results and the uniform-density assumption are
sharp, as demonstrated by the counterexamples in Section 2.

2 Motivating Example for Perimeter Blow-Up

Before we start working towards the main results, let us give a motivating example. It shows why it is necessary
to introduce the notion of uniform lower density in Subsection 4.2 together with the complexities it creates.

There is a classical textbook example for elementary geometry: Let a rope be put tightly around the Earth’s
equator. If the rope is now prolonged by a single metre, how far will it be above the surface? With a trivial
calculation, one arrives at the surprising result that the distance is not negligible. In fact, the relationship between
the changes in a circle’s radius and its perimeter is independent of the circle’s size. We can exploit this fact not
just for huge but also for tiny circles. This allows us to show that the perimeter of Ωt can blow up for t → 0+

even if Ω0 has finite perimeter and is bounded:

Example 1. Consider D = [0, 2]× [0, 1] ⊂ R2 as hold-all domain. For k = 0, 1, . . ., define

lk = 4−k, rk =
(lk)2

4
=

1

4
· 16−k, Nk =

2−k

(lk)2
= 8k.

Based on these definitions, we define Ω0 as an infinite union of balls as depicted in Figure 1. Specifically, Ω0

is constructed by splitting D first into a sequence of vertical strips with widths 2−k. Each strip is then further
divided into squares of size lk × lk. Into each such square, we put a ball with radius rk. For each k, there is a
total of Nk such squares and balls.

Each ball at level k has perimeter 2πrk, so that the total perimeter of Ω0 is given as

P (Ω0) =

∞∑
k=0

Nk · 2πrk =
π

2

∞∑
k=0

(
8

16

)k
= π.

Thus, Ω0 is a bounded set of finite perimeter. It is also clear that it has a smooth boundary, since it consists
entirely of balls. However, since the radii of the balls become arbitrarily small, the curvature of Γ0 is not bounded.
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l0 l1 l1

N0 = 1 N1 = 8
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Figure 1: The notation and initial set Ω0 used in Example 1. Ω0 consists of the union of all grey balls.

For the time evolution of Ω0, note that each circle grows outwards and is a circle of radius rk + t at time t. This
works as long as t is small enough, so that the circle does not yet hit another growing circle. If we let tk be the
time at which the circles of level k hit their enclosing square, we find that

tk =
lk
2
− rk =

1

2
· 4−k − 1

4
· 16−k =

1

2
· 4−k

(
1− 1

2
· 4−k

)
≥ 1

4
· 4−k. (2)

The other way round, this means that for times t < tk, all circles up to (and including) level k have certainly not
touched any others. Let t > 0 be given, and m such that tm+1 ≤ t < tm. If we use only circles up to level m to
estimate the perimeter of Ωt, this yields

P (Ωt) ≥
m∑
k=0

Nk · 2π(rk + t) ≥ 2π

m∑
k=0

Nkt ≥ 2πtm+1

m∑
k=0

8k ≥ π

2

1

4m+1

8m+1 − 1

7
≥ π

14

(
2m+1 − 1

)
. (3)

Note that we can see already here that this expression is unbounded for t→ 0+, since this limit corresponds to
m→∞. To get a more precise estimate, we can rewrite (2) to get

4m ≥ 1

4tm
⇔ 2m ≥ 1

2
√
tm

⇒ 2m+1 ≥ 1

2
√
tm+1

≥ 1

2
√
t
.

Combining this result with (3) finally gives

P (Ωt) ≥
π

14

(
1

2
√
t
− 1

)
,

which diverges like 1/
√
t as t→ 0+ and certainly becomes unbounded.

If one considers the calculations in Example 1 carefully, one can see that the base number in the definition
of lk (four in the example) influences only the constant in front of the final estimate as long as it is larger than
two. The exponent 1/2 determining the rate to be 1/

√
t comes from the fact that each level of balls gets assigned

only half the area that was assigned to the previous level. We can increase this fraction as long as it is less than
one if we still want to get a bounded set as result. This line of thought can be extended to the following result:

Theorem 1. Let n ≥ 2 and 0 < s < 1 be given. There exists a Caccioppoli set Ω0 ⊂ Rn bounded and with
smooth boundary, such that

P (Ωt) ≥
C

ts

for some constant C and t > 0 small enough. In particular, this rate of divergence holds in the limit t→ 0+.

Proof. We replicate the construction of Example 1: For the desired result, choose some α > 1 and set

f = αs−1 ∈ (0, 1).

Note that fαn > fα = αs > 1. We define

lk = α−k, rk =
(lk)n

4
=
α−kn

4
, Nk =

⌈
fkαnk

⌉
.
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This leads to a total volume of all (lk)n-cubes of

∞∑
k=0

Nk(lk)n ≤
∞∑
k=0

(
fkαnk + 1

)
α−nk =

∞∑
k=0

fk +

∞∑
k=0

(
α−n

)k
=

1

1− f +
1

1− α−n <∞.

Hence, since f < 1, we can fit everything into a bounded set as before. Clearly, Ω0 has again a smooth boundary.
Its perimeter is also finite since

P (Ω0) = C

∞∑
k=0

Nk(rk)n−1 ≤ C
∞∑
k=0

(
fkαnk + 1

)
rk

=
C

4

(
∞∑
k=0

fk +

∞∑
k=0

(
α−n

)k)
=
C

4

(
1

1− f +
1

1− α−n

)
.

On the other hand, we still find that balls at level k have not yet hit anything else until time

tk =
lk
2
− rk =

α−k

2
− α−kn

4
≥ α−k

2
− α−k

4
=
α−k

4
. (4)

Thus, for t > 0 with tm+1 ≤ t < tm, we know that

P (Ωt) ≥ C
m∑
k=0

Nk(rk + t)n−1 ≥ C(tm+1)n−1 ·
m∑
k=0

Nk ≥ C
(
α−(m+1)

4

)n−1

·
m∑
k=0

(fαn)k

=
C

4n−1

(
αn−1)−(m+1) fm+1 (αn)m+1 − 1

fαn − 1
≥ C

4n−1 (fαn − 1)

(
(fα)m+1 − 1

)
= C′

(
(αs)m+1 − 1

)
,

where we have defined the constant C′ suitably. From (4), it follows that

αm+1 ≥ 1

4tm+1
≥ 1

4t
⇔ (αs)m+1 ≥ 4−s

ts
.

Combining this with the estimate for P (Ωt) above shows the claim.

3 Auxiliary Geometric Results

In order to show our main results in Section 4 (in particular, Theorem 3), we need some auxiliary results. They
are only based on elementary geometry and will be prepared in this section. The basic object studied is what we
will call a sector below:

Definition 1. Let x0, x ∈ Rn and φ ∈ [0, π/2]. We define

Sφ(x0, x) = {y ∈ Rn | 0 < |x0 − y| < |x0 − x| and (y − x0) · (x− x0) > |x0 − y| |x0 − x| · cosφ} .

We will often set t = |x0 − x| to be the sector’s radius. The set Sφ(x0, x) is an open sector of the ball with centre
x0 and radius t. The value of φ, which corresponds to the maximum allowed angle x–x0–y, defines the sector’s
aperture.

Besides using the angle φ directly, we will also need to define such a sector via an auxiliary ball Bδ (x) for
δ < t. The idea is depicted in Figure 2b: In this case, the sector’s aperture is defined indirectly via δ. It is chosen
as the angle at which the ball around x intersects the larger sphere with centre x0. With basic trigonometry, one
can derive

φ(δ) = arccos

(
1− δ2

2t2

)
(5)

for the corresponding aperture angle. In the following, we will only need two basic properties of this explicit
function: δ < tφ(δ) holds for all δ and tφ(δ)/δ → 1 in the limit δ → 0+. In other words, tφ(δ) ≈ δ asymptotically
for small δ.

The first part of our geometric analysis of sectors is concerned with determining their volume (i. e., n-
dimensional Lebesgue measure). For this, let us state the following fundamental geometric facts:

Lemma 1. Let n ≥ 2. The volume of a ball with radius ρ > 0 is given by

vol (Bρ (x)) = ωnρ
n, ωn =

πn/2

Γ(n/2 + 1)
.
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x0

x

t

(a) Based on φ according to Definition 1.

δ

x0

x

(b) Defined via the ball Bδ (x) and (5).

Figure 2: Definitions of the sector Sφ(x0, x).

This holds obviously for arbitrary x ∈ Rn.
Furthermore, there exists a mapping r : [0, π/2] → [0, 1/2] which is continuous, bijective, strictly increasing

and satisfies
vol (Sφ(x0, x)) = r(φ) · vol (Bt (0)) = r(φ) · ωntn (6)

for all x0, x ∈ Rn and φ ∈ [0, π/2]. Here, we have set t = |x0 − x| as before. In addition,

lim
φ→0+

r(φ)

φn−1
> 0 (7)

exists and is strictly positive.

Proof. The volume of n-dimensional balls is a well-known result. See, for instance, Theorem 26.13 in [16]. The
remaining statements follow by a routine calculation in spherical coordinates.

We can also relate the surface area of a sector’s base to its volume. This result will be used later when we
prove Theorem 3. It follows immediately from Lemma 1 and, in particular, (7):

Lemma 2. For fixed t > 0, there exist δ0 > 0 and a dimensional constant C such that

δn−1ωn−1 ≤ C
vol
(
Sφ(δ)(x0, x)

)
t

for all δ ∈ (0, δ0) and arbitrary x0, x ∈ Rn with |x0 − x| = t.

Finally, let us consider two sectors Sφ(x0, x) and Sφ(y0, y). The angle is the same for both, and we assume
that φ = φ(δ) for some δ > 0. Let also t = |x0 − x| = |y0 − y|. We are particularly interested in the situation

Bδ (x) ∩Bδ (y) = ∅ and t ≤ min(|x0 − y| , |y0 − x|). (8)

A main ingredient for the proof of Theorem 3 is the fact that this condition is sufficient for both sectors to be
disjoint. This is illustrated in Figure 3: If the balls are disjoint, we can construct the hyperplane H that divides
the line x–y at its midpoint and is perpendicular to it. This plane has the property that all points “above” it are
closer to x than to y, and vice-versa for points on the other side. Thus, (8) implies that x0 is on the same side
as x, while y0 must be on the other side together with y. Hence, the plane separates the convex sets Sφ(x0, x)
and Sφ(y0, y) from each other, which means that the sectors must be disjoint. This is the main idea behind the
following result:

Lemma 3. Let δ > 0 and x0, y0, x, y ∈ Rn with t = |x0 − x| = |y0 − y| such that (8) holds. Then

Sφ(δ)(x0, x) ∩ Sφ(δ)(y0, y) = ∅.
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x0

x

y0

y

H

Figure 3: The hyperplane H separates both the balls and the full sectors from each other when (8) holds.
This is the main idea in the proof of Lemma 3.

Proof. With a proper translation, we can assume, without loss of generality, that y = −x. Because Bδ (x) and
Bδ (y) are disjoint, the hyperplane

H = {p ∈ Rn | x · p = 0}
separates both balls (see Figure 3). Furthermore, by (8) we know

|x0 − x|2 = t2 ≤ |x0 − y|2 = |x0 + x|2 .

Multiplying this inequality out, we find 0 ≤ x ·x0. This means that x and x0 are on the same side of H. Similarly,
we also find that y and y0 are on one side of H. Since y = −x, this means

0 ≤ y · y0 ⇔ x · y0 ≤ 0.

Hence, x0 and y0 are on different sides of the hyperplane H. Thus, H separates also the convex hulls of
Bδ (x)∪ {x0} and Bδ (y)∪ {y0}, which contain Sφ(x0, x) and Sφ(y0, y), respectively. This shows that the sectors
are, indeed, disjoint.

4 Main Results

With the preparations of Section 3 in place, we can now proceed to show the main results. As before, let us
assume that Ω0 ⊂ Rn is an open set. We denote its boundary by Γ0 = ∂Ω0 and introduce d = dΩ0 as the distance
function of Ω0. Recall also the definitions of Ωt and Γt from (1).

Lemma 4. For each x ∈ Rn \ Ω0,
d(x) = inf

y∈Γ0

|x− y| . (9)

Furthermore, there exists x0 ∈ Γ0 with d(x) = |x− x0|.

Proof. See (2.2) on page 337 of [9] for (9). Γ0 is closed, and we can clearly restrict the infimum to some bounded
subset of Γ0. Hence, this subset is compact and there exists a minimiser x0.

In the following, we are interested in estimating the “surface area” of Ωt for t > 0. Before we can do that, let
us briefly recall the applicable concepts for defining such a surface area in the first place: For an open set Ω ⊂ Rn,
we denote by P (Ω) its perimeter as defined, for instance, by Definition 3.35 on page 143 of [3]. (Note that we
are mostly interested in the perimeter relative to the base set Rn.) The set Ω is said to have finite perimeter or
to be a Caccioppoli set if P (Ω) <∞.

Furthermore, let us introduce also the Hausdorff measure following Definition 2.46 on page 72 of [3]:
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Definition 2. Let k ∈ N and Ω ⊂ Rn. For δ > 0, we define

Hkδ (Ω) = inf

{
∞∑
i=1

(
di
2

)k
ωk

∣∣∣∣∣ Ω ⊂
∞⋃
i=1

Ui, di = sup
x,y∈Ui

|x− y| , di ≤ 2δ

}
.

Here, ωk denotes the volume of the k-dimensional unit ball as in Lemma 1. The value di is the diameter of the
set Ui, and it is allowed to be at most 2δ in order for (Ui) to be an admissible δ-covering of Ω.

Furthermore, the k-dimensional Hausdorff measure of Ω is then given by

Hk(Ω) = sup
δ>0
Hkδ (Ω) = lim

δ→0+
Hkδ (Ω).

Note that we define the Hausdorff measure in such a way that Hn corresponds to the n-dimensional Lebesgue
measure. (For a proof, see Theorem 2.53 in [3].) This is the reason for including ωk in the definition. Other
authors (e. g., [16]) do not add this normalisation constant, which results in a notion of Hk that is different from
Definition 2 by a constant.

For the case of only one dimension, the situation is simple since sets of finite perimeter in one dimension can
be represented (up to a set of measure zero) as the union of a finite number of intervals:

Theorem 2. Let n = 1 and Ω0 ⊂ R be open and bounded. Then Γt is a finite set for each t > 0 and its cardinality
is non-increasing with respect to t. Furthermore,

H0(Γt) ≤ P (Ω0) . (10)

If Ω0 has finite perimeter and t is sufficiently small, then both values are actually equal.

Proof. Let t > 0 and x ∈ Γt. Lemma 4 implies that there exists x0 ∈ Γ0 with |x− x0| = t. Assume, without
loss of generality, that x0 < x. It follows that Ix = (x0, x) ⊂ d−1 ((0, t)). Furthermore, if y ∈ Γt and x 6= y,
then Ix ∩ Iy = ∅. Since vol (Ix) = t > 0 for each x ∈ Γt and Ωt is bounded, the cardinality of Γt is bounded as
H0(Γt) ≤ vol (Ωt) /t and thus finite. If we have 0 < s < t, the estimate (10) implies that

H0(Γt) ≤ P (Ωs) ≤ H0(Γs).

Hence it follows that the cardinality is non-increasing when we have established (10).
For (10), assume that Ω0 has finite perimeter (the situation is trivial otherwise). According to Proposition 3.52

on page 153 of [3], there exist p ∈ N and p disjoint intervals Ji = [ai, bi] such that Ω0 ⊂
⋃p
i=1 Ji. These two sets

can only differ up to a set of measure zero. Furthermore, P (Ω0) = 2p. As before, we can associate an interval
Ix ⊂ d−1 ((0, t)) to each x ∈ Γt, and all Ix are disjoint. If we assume that Ix = (x0, x), then x0 = bi for some
1 ≤ i ≤ p. Similarly, x0 = ai if Ix = (x, x0). This implies (10), since

H0(Γt) ≤ 2p = P (Ω0) .

If we assume an ordering such as
a1 < b1 < a2 < b2 < · · · < ap < bp

and denote by
L = inf

i=1,...,p−1
(ai+1 − bi) > 0

the minimal distance between the intervals Ji, then equality holds with H0(Γt) = 2p for t < L/2.

4.1 A Bound on the Hausdorff Measure

Intuitively, Ωt is constructed from Ω0 by adding a “layer” of thickness t onto Γ0. Following this picture, one can
imagine that the volume of this layer should roughly equal t times the surface area (i. e., perimeter) of either Ω0

or Ωt. This argument can be made rigorous by estimating the volume in terms of P (Ω0), and then Hn−1(Γt) in
terms of the volume. The former will be done in Subsection 4.2. We will show the latter as our first main result
in this subsection. This is, somehow, an inverse isoperimetric inequality. Of course, in the general situation no
inverse to the classical isoperimetric inequality (see Subsection 5.6.2 of [11]) holds. In our case, however, it works
because the considered volume is not allowed to be “arbitrarily thin”.

Definition 3. For a fixed initial set Ω0 and t > 0, we define the newly created volume to be

Ut =

( ⋃
x0∈Γ0

Bt (x0)

)
\ Ω0 = {x ∈ Rn | 0 < d(x) < t} .

We can now state and prove the first main result:
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Theorem 3. There exists a dimensional constant C such that

P (Ωt) ≤ Hn−1(Γt) ≤ C ·
vol (Ut)

t

holds for all t > 0.

Proof. The first inequality is a well-known fact about the relation between perimeter and the Hausdorff measure.
See, for instance, Proposition 3.62 on page 159 of [3]. We will now show the second inequality. For this, let δ > 0
be given. Then clearly Γt ⊂ ∪x∈ΓtBδ (x). According to Vitali’s covering theorem (see Theorem 1 on page 27
of [11]), there exists a countable subset X ⊂ Γt such that

Γt ⊂
⋃
x∈X

B5δ (x) (11)

and all Bδ (x) are disjoint for x ∈ X. Note that X is, in fact, finite if Ω0 and thus also Γt are bounded.
For each x ∈ Γt, there exists a corresponding x0 ∈ Γ0 with |x− x0| = t according to Lemma 4. Furthermore,

t ≤ |y − y0| for all y ∈ Γt and y0 ∈ Γ0. For x ∈ X and its associated point x0 ∈ Γ0, let us define

Sx = Sφ(δ)(x0, x).

Note that the condition (8) is satisfied for each pair (Sx, Sy) with x, y ∈ X, so that all Sx and Sy with x 6= y are
disjoint by Lemma 3. Also note that a basic geometric argument implies Sx ∩ Ω0 = ∅ for small enough δ. Thus,
we find that each Sx is contained in the newly created volume and get

∑
x∈X

vol (Sx) = vol

( ⋃
x∈X

Sx

)
≤ vol (Ut) . (12)

Since the enlarged balls in (11) provide a particular 5δ-covering of Γt, we know that

Hn−1
5δ (Γt) ≤

∑
x∈X

(5δ)n−1ωn−1 ≤ 5n−1C
′

t

∑
x∈X

vol (Sx) .

The last estimate and the constant C′ come from Lemma 2. Together with (12), this yields

Hn−1
5δ (Γt) ≤ 5n−1C′ · vol (Ut)

t
.

The bound on the right-hand side does not depend on δ any more, so that we can take the limit δ → 0+ to finish
the proof.

Having this first result, we can already show that all evolved sets Ωt must be Caccioppoli sets:

Corollary 1. Let Ω0 be bounded. Then Ωt has finite perimeter for all t > 0.

Proof. From the boundedness of Ω0, we can directly conclude that also Ωt and Ut are bounded sets for any fixed
t. Thus, vol (Ut) < ∞ and Theorem 3 implies that Hn−1(Γt) is finite for each t. It follows now again from
Proposition 3.62 on page 159 of [3] that Ωt is a set of finite perimeter.

Take note that the actual bound we get from Corollary 1 diverges like 1/t for t→ 0+. It will be the focus of
the next subsection (in particular, Corollary 2) to show a uniform bound as t→ 0+ under additional assumptions.
Without these assumptions, however, we can not hope for any strong improvement of Corollary 1: As we have
seen in Theorem 1, the optimal upper bound must diverge stronger than 1/ts for any s ∈ (0, 1).

4.2 Uniform Bounds

As we have seen above in Theorem 3, the quantity vol (Ut) /t is crucial as it gives an upper bound on the evolved
sets’ perimeters. Particularly interesting is the limit t→ 0+. As our second main result below, we can show that
there exists a uniform upper bound for t → 0+ as long as a uniform density condition holds for the initial set
Ω0. This condition prevents arbitrarily sharp corners and cusps. To be precise:
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Definition 4. Let A ⊂ Γ0, c ∈ (0, 1) and t0 > 0. We say that Ω0 has (t0, c)-uniform lower density on A if the
estimate

0 < c ≤ vol (Bt (x) ∩ Ω0)

vol (Bt (x))
(13)

holds for all t ∈ (0, t0) and x ∈ A. Similarly, Ω0 is said to have (t0, c)-uniform upper density on A if

vol (Bt (x) ∩ Ω0)

vol (Bt (x))
≤ 1− c < 1. (14)

When both conditions are satisfied together, Ω0 simply has (t0, c)-uniform density on A.

For fixed x and in the limit t→ 0+, the quotient in (13) and (14) gives the density of Ω0 at x. See page 158
of [3] for some known results about this quantity. In particular, let FΩ denote the reduced boundary of an open
set Ω. (Roughly speaking, this is the set of all boundary points where a measure-theoretic variant of the normal
vector to the boundary can be defined. See Definition 3.54 on page 154 of [3].) Then Ω has density 1/2 at all
points in FΩ. This is, for instance, also true in the example constructed in Section 2. Hence, note that uniformity
of the estimates is really crucial for our purposes in the following. Note that we are not the first to introduce
the concept of uniform lower density. It has been used already by others in a similar context. See, for instance,
Proposition 4.2 in [2] and Theorem 6 in [7]. The relation between uniform density and other, more established
geometric properties will be discussed in more detail in Subsection 4.3.

For our estimate of vol (Ut), we need to somehow get an upper bound on t in terms of the perimeter of Ω0.
For a classical result in this direction, see (3.54) on page 156 of [3]. Unfortunately, this estimate is local in nature
and not uniform over the whole boundary of Ω0. Note, however, that (13) and (14) together are equivalent to

c ≤ min (vol (Bt (x) ∩ Ω0) , vol (Bt (x) \ Ω0))

vol (Bt (x))
. (15)

This relation can be combined with the relative isoperimetric inequality (see, for instance, Theorem 2 on page 190
of [11]) to get the uniform estimate that we need:

Lemma 5. Let Ω0 have (t0, c)-uniform density on A. Then there exists a dimensional constant C such that

tn−1 ≤ C
(

1

c

)n−1
n

Hn−1 (Bt (x) ∩ FΩ0)

for all x ∈ A and t ∈ (0, t0).

Proof. Since we assume uniform density, (15) implies that

c · vol (Bt (x)) = c · ωntn ≤ min (vol (Bt (x) ∩ Ω0) , vol (Bt (x) \ Ω0))

for all t ∈ (0, t0). If we also apply the relative isoperimetric inequality, we get

tn−1 ≤ C
(

1

c

)n−1
n

P (Ω0;Bt (x))

for some dimensional constant C. This implies the result together with the well-known relation between perimeter
and Hn−1 that can be found in Theorem 3.59 on page 157 of [3].

So far, we have assumed uniform density of Ω0. It will turn out, however, that it is enough to require only
uniform lower density. Uniform upper density is provided automatically if we choose the subset A ⊂ Γ0 in the
right way:

Definition 5. We say that x0 ∈ Γ0 is backwards reachable for time t > 0 if there exists x ∈ Rn with

t ≤ |x0 − x| = d(x). (16)

The set of all backwards reachable points for time t is denoted by Rt.

See Figure 4a for an illustration of the set Rt: The point x0 ∈ Rt is shown together with a possible x ∈ Γt
that fulfils (16). Note that only the red part of Γ0 is backwards reachable. Thus, we see that Rt is actually more
regular than Γ0 itself. In particular, Ω0 has always uniform upper density on Rt. To understand why this must
be the case, take a look at Figure 4b: Whenever x0 and x are as indicated, the ball Bt (x) must be disjoint to Ω0

since otherwise d(x) < t would be the case. Thus, the volume of Bt (x) ∩Bt (x0) can never be part of Ω0, which
implies an upper bound for the density of Ω0 at x0. (For the shown situation, the density is actually 1/2. The
maximal possible density would be achieved if also the light grey area were part of Ω0.) Let us formalise this
argument:
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Ω0

Γt

Rt

x

x0

t

(a) The set Rt of Definition 5.

x0

x

t

(b) The main argument in the proof of Lemma 6.

Figure 4: The backwards reachable set and its regularity with respect to uniform upper density. The
dark grey region is Ω0. The point x0 is on Rt ⊂ Γ0, with x ∈ Γt such that (16) holds.

Lemma 6. Let t > 0 and Rt be the backwards reachable set for time t. Then Ω0 has (t, c)-uniform upper density
on Rt, where c is a dimensional constant.

Proof. Let e ∈ Rn be arbitrary with |e| = 1. We define

0 < c =
vol (B1 (0) ∩B1 (e))

vol (B1 (0))
< 1.

Now choose x0 ∈ Rt and τ ≤ t. We have to show that (14) holds for Bτ (x0) with the defined c. By Definition 5,
there exists x ∈ Rn such that τ ≤ t ≤ |x0 − x| = d(x). We can assume, without loss of generality, that
|x0 − x| = τ . Considering Figure 4b, this implies Bτ (x) ∩ Ω0 = ∅. Hence:

vol (Bτ (x0) ∩ Ω0)

vol (Bτ (x0))
= 1− vol (Bτ (x0) \ Ω0)

vol (Bτ (x0))
≤ 1− vol (Bτ (x0) ∩Bτ (x))

vol (Bτ (x0))
= 1− c

Another important observation is that the backwards reachable set is already sufficient for the construction
of the newly created volume Ut. This allows us to restrict our considerations to the more regular Rt instead of
Γ0 itself later on.

Lemma 7. For 0 < s < t, Rt ⊂ Rs. Furthermore,

Ut \ Us ⊂
⋃

x0∈Rs

Bt (x0) .

Proof. The inclusion Rt ⊂ Rs is immediately clear from Definition 5. Pick x ∈ Ut \ Us arbitrarily. By Lemma 4
we can find x0 ∈ Γ0 with d(x) = |x0 − x|. Moreover, x 6∈ Us implies that d(x) ≥ s, so that x0 ∈ Rs. Similarly,
x ∈ Ut yields d(x) < t and thus x ∈ Bt (x0).

With this result, all preparations are in place and we can proceed to the actual estimate of vol (Ut). This is
done in two steps: First, we estimate vol (U2t \ Ut). The regularity of the backwards reachable set with respect
to uniform upper density of Ω0 can be used for this situation. Afterwards, we build the union of a sequence of
such strips in order to get vol (Ut) itself.

Lemma 8. Assume that Ω0 has (t0, c)-uniform lower density on Γ0. Then there exists a dimensional constant
C such that

vol (U2t \ Ut) ≤ C
(

1 +
1

c

)n−1
n

t · P (Ω0)

holds for all t ∈ (0, t0).
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Proof. According to Lemma 6, we know that Ω0 has (t, c′)-uniform upper density on Rt with some dimensional
c′. Since it has uniform lower density per assumption, it has (t, c′′)-uniform density (both upper and lower) with
c′′ = min(c, c′). Furthermore, note that

1

c′′
=

1

min(c, c′)
≤ 1

c
+

1

c′
.

Thus Lemma 5 implies that

tn ≤ C′
(

1

c
+

1

c′

)n−1
n

t · Hn−1(Bt (x0) ∩ FΩ0)

for all x0 ∈ Rt with some dimensional C′. Taking it even further, this yields also

vol
(
B10t (x0)

)
= 10n · vol

(
Bt (x0)

)
≤ C

(
1 +

1

c

)n−1
n

t · Hn−1(Bt (x0) ∩ FΩ0) (17)

for yet another dimensional constant C.
Making use of Lemma 7, we know that

U2t \ Ut ⊂
⋃

x0∈Rt

B2t (x0) .

With Vitali’s covering theorem (see, again, Theorem 1 on page 27 of [11]), we can construct X ⊂ Rt at most
countable such that the sets B2t (x0) are disjoint for x0 ∈ X, but still

U2t \ Ut ⊂
⋃
x0∈X

B10t (x0).

Taking the measure on both sides of this inclusion and using (17), we finally find

vol (U2t \ Ut) ≤
∑
x0∈X

vol
(
B10t (x0)

)
≤ C

(
1 +

1

c

)n−1
n

t ·
∑
x0∈X

Hn−1(Bt (x0) ∩ FΩ0)

≤ C
(

1 +
1

c

)n−1
n

t · Hn−1(FΩ0) = C

(
1 +

1

c

)n−1
n

t · P (Ω0) .

The simplification of the sum is justified because all sets Bt (x0) are disjoint.

Theorem 4. Let Ω0 have (t0, c)-uniform lower density on Γ0. Then

vol (Ut)

t
≤ C

(
1 +

1

c

)n−1
n

P (Ω0)

for all t ∈ (0, t0) and a dimensional constant C.

Proof. Let t ∈ (0, t0) be given. Then the disjoint telescopic decomposition

Ut =
(
Ut \ Ut/2

)
∪
(
Ut/2 \ Ut/4

)
∪ · · · =

∞⋃
k=1

(
U2t/2k \ Ut/2k

)
holds. Together with Lemma 8 this yields

vol (Ut) =
∞∑
k=1

vol
(
U2t/2k \ Ut/2k

)
≤ C

(
1 +

1

c

)n−1
n

P (Ω0) ·
∞∑
k=1

t

2k
= C

(
1 +

1

c

)n−1
n

t · P (Ω0) .

This finishes the proof.

When we combine Theorem 4 with Theorem 3, we finally get a uniform bound for Hn−1(Γt). This result is
very similar to Theorem 6 in [7], but note that it holds for all t ≥ 0 and not just for almost all:

Corollary 2. Assume that Ω0 has (t0, c)-uniform lower density on Γ0 and that Ω0 is bounded. In particular, let
Ω0 ⊂ BR (0) for some R > 0. Then

Hn−1(Γt) ≤ C ·
(
1 + P (Ω0) + tn−1) (18)

for all t ≥ 0. The constant C depends only on n, t0, c and R but no other properties of Ω0.
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Proof. Note that the situation is clear for t = 0 as long as we choose C ≥ 1. From Theorem 4, we know that
vol (Ut) /t ≤ C′P (Ω0) for all t ∈ (0, t0). Furthermore, since Ω0 ⊂ BR (0), note that Ωt ⊂ BR+t (0). Thus, for
t ≥ t0,

vol (Ut) ≤ ωn(R+ t)n ≤ C′′(1 + tn) ⇒ vol (Ut)

t
≤ C′′

(
1

t
+ tn−1

)
≤ C′′′

(
1 + tn−1) .

The claim now follows from Theorem 3, if we combine both estimates for vol (Ut) /t.

4.3 Geometric Regularity Properties in the Literature

The main ingredient for the results in the previous Subsection 4.2 is a particular geometric property of the initial
set Ω0, namely uniform density from Definition 4. As pointed out above, this notion has been used already by
others to achieve similar results (see [2] and [7]). We are not aware of any applications in a broader context,
though. Thus, it makes sense to put it into perspective with similar geometric properties that are more established
in the literature and more widely used. In particular, a variety of so-called (uniform) segment and cone properties
is often used to characterise geometric regularity of sets. For a thorough introduction, see Section 2.6 of [9].

Since uniformity plays an important role for the results of Subsection 4.2, it makes only sense to consider the
uniform variants of those segment properties. (All non-uniform properties are fulfilled by the example developed
in Section 2, since it is constructed only from circles.) Furthermore, the uniform (fat) segment property alone
also provides very little regularity. For instance, a cusp satisfies it while it clearly does not have uniform lower
density. Thus, let us focus on the uniform cone property. For convenience, we recall Definition 6.3 on page 115
of [9]:

Definition 6. For x0, x ∈ Rn and φ ∈ [0, π/2], define the open cone

Cφ(x0, x) =
{
y ∈ Rn

∣∣ |x0 − y| |x0 − x| · cosφ < (y − x0) · (x− x0) < |x0 − x|2
}
.

This is similar to the sector Sφ(x0, x) of Definition 1 studied above, but it describes a cone with flat base, i. e.,
without a spherical cap.

Now, let Ω ⊂ Rn be open. We say that Ω satisfies the uniform cone property if there exist t > 0, φ ∈ (0, π/2)
and ρ > 0 such that for all x0 ∈ ∂Ω there is x ∈ Rn with |x0 − x| = t and

x+ d ∈ Ω ⇒ Cφ(x0 + d, x+ d) ⊂ Ω

for all d ∈ Bρ (0).

Since the uniform cone property ensures for each boundary point the existence of a cone that is entirely
contained in Ω, we can use this cone’s volume as a lower bound on the density of Ω. Thus, the uniform cone
property is a stronger condition than uniform lower density:

Theorem 5. Let Ω ⊂ Rn satisfy the uniform cone property with t and φ as in Definition 6. Then Ω has (t, r(φ))-
uniform lower density on ∂Ω. Similarly, if Rn \ Ω has the uniform cone property with these constants, then Ω
has (t, r(φ))-uniform upper density.

Proof. Let x0 ∈ ∂Ω be given. According to Definition 6, there exists x ∈ Rn with |x0 − x| = t such that
Cφ(x0, x) ⊂ Ω. Note that Sφ(x0, x) ⊂ Cφ(x0, x) since

|x0 − y| < |x0 − x| ⇒ (y − x0) · (x− x0) ≤ |y − x0| · |x− x0| < |x0 − x|2 .

Thus, for each τ ∈ (0, t), clearly
Bτ (x0) ∩ Sφ(x0, x) ⊂ Bτ (x0) ∩ Ω.

Hence, we can estimate

vol (Bτ (x0) ∩ Ω) ≥ vol (Bτ (x0) ∩ Sφ(x0, x)) = r(φ) · vol (Bτ (x0))

based on (6). This shows the claim. The proof for uniform upper density works analogously.

Another concept related to our definition of uniform lower density are sets with finite density perimeter as
defined in [4] and Subsection 3.1 of [8]:

Definition 7. Let Ω ⊂ Rn be open and h > 0. The h-density perimeter of Ω is then defined as

Ph (Ω) = sup
0<ε<h

vol (Vε(∂Ω))

2ε
, (19)

where Vε(∂Ω) is the ε-envelope of ∂Ω:

Vε(∂Ω) =
⋃
x∈∂Ω

Bε (x) = {x ∈ Rn | d∂Ω(x) < ε}

If Ph (Ω) is finite, we call Ω a set of finite h-density perimeter.
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This can be interpreted as a relaxation of the (n−1)-dimensional Minkowski content (see, for instance, 3.2.37
in [12]). To be precise, the Minkowski content results if the supremum in (19) is replaced by the limit ε → 0+.
It is easy to see that Vε(Ω0) is related to the newly created volume Uε of Definition 3: The set Uε is the part of
Vε(Ω0) which is outside of Ω0. Hence, an argument similar to the proof of Theorem 4 can be applied to show
that uniform density implies finite density perimeter.
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