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Daniel Kraft: Stochastic Variational Approaches to Non-Hermitian Quantum-Mechanical Problems

Abstract

Resonances are very interesting phenomena, which appear in a wide range of classical and
quantum systems. The mathematical description of quantum-mechanical resonances is
connected with complex eigenvalues of the Hamiltonian of a given system. This fact intro-
duces various difficulties, especially since resonance eigenfunctions are not normalisable.
This work aims at developing techniques for the treatment of quantum-mechanical reso-
nances with variational methods. For this purpose particular similarity transformations
of the Hamiltonian, such as the Zel’dovich and complex-scaling transformations, are em-
ployed. A precise mathematical description of the transformation operators and extended
function spaces is given. In addition a generalisation of the Rayleigh-Ritz variational
principle is derived, which can be applied to non-Hermitian eigenvalue problems. Several
basis-selection criteria are proposed for adapting the stochastic variational method to the
non-Hermitian case. Their efficiencies are demonstrated for a one-dimensional problem
with a potential considered before in the literature. It is found that the stochastic varia-
tional method can practically be extended to quantum-mechanical resonances and com-
plex eigenvalues. It usually outperforms alternative methods for treating non-Hermitian
Hamiltonians.

Kurzzusammenfassung

Sowohl in klassischen als auch in Quantensystemen sind Resonanzen sehr interessante
Phénomene. Thre mathematische Beschreibung ist eng mit komplexen Eigenwerten des
Hamilton-Operators eines Systems verkniipft, was zu einigen Schwierigkeiten in der Hand-
habung fiihrt, da die zugehorigen Eigenfunktionen nicht normierbar sind. Das Ziel dieser
Arbeit ist es zu beschreiben, wie Variationsmethoden zur Behandlung von quantenmecha-
nischen Resonanzen verwendet werden kénnen. Dafiir werden Ahnlichkeitstransformatio-
nen wie die Zel’dovich- und die Complex-Scaling-Transformation angewandt, und es wird
eine mathematisch prézise Beschreibung der involvierten Operatoren und erweiterten
Funktionenrdume gegeben. Auflerdem wird eine Erweiterung des Rayleigh-Ritz-Prinzips
auf nicht-hermitische Eigenwertprobleme vorgestellt, und die stochastische Variationsme-
thode auf den nicht-hermitischen Fall erweitert. Dafiir stellen wir verschiedene mogliche
Auswahlkriterien fiir Basisfunktionen vor und testen unsere Methoden an einem eindi-
mensionalen Problem, das auch schon in der Literatur untersucht worden ist. Unsere Va-
rianten der stochastischen Variationsmethode kénnen die Resonanzpositionen erfolgreich
und effizienter als andere Methoden zur Behandlung von nicht-hermitischen Problemen
berechnen.
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1 Introduction

In the vast majority of textbooks and academic literature, quantum mechanics is for-
mulated within a mathematical framework that is based on Hilbert spaces for quantum
states and operators for observables. These operators are assumed to be Hermitian, which
ensures that eigenvalues are real. This is considered a very fundamental ingredient to the
mathematical description of quantum mechanics as it is conventionally presented (see,
for instance, [I]). Most practical methods for solving quantum-mechanical problems are
adapted to such a framework. This is particularly true for variational techniques treating
bound states. They are based on the fundamental Rayleigh-Ritz theorem, which states
that the ground-state energy of a system can be approximated increasingly better if the
energy expectation value is minimised over an ever larger subspace of the full Hilbert
space. This can be done very well in practice and yields good results. It is a method that
is also applicable for high-dimensional problems, when discretisation methods break down
because of their exponentially rising computational costs. In particular, the stochastic
variational method, as it is described, for instance, in [2], is very flexible and well-suited
for a wide range of problems, especially because it allows to handle non-linear variational
parameters.

Quantum resonances are striking phenomena that appear in a wide range of systems
of different scales; from molecules and atoms to nuclear and particle physics. They play
important roles in the theoretical as well as experimental treatment of systems occurring
there. Resonances can be described mathematically by considering complex poles of the
scattering matrix, which correspond to complex eigenvalues of the Hamiltonian of a given
system. This introduces technical difficulties, however: The corresponding resonance
wave functions do not satisfy appropriate decay properties for r — oo (in fact, they
grow exponentially in this limit) and are thus not square-integrable, which prevents the
direct application of most methods used commonly in quantum mechanics (including the
variational techniques mentioned above). These methods are based on a Hilbert-space
setting and assume eigenfunctions in spaces like L?(R"). The way out is to apply suitable
similarity transformations (such as complex scaling), what changes the problem of finding
the resonance positions into finding eigenvalues of a transformed operator on a Hilbert
space. This operator is, however, non-Hermitian. The basic ideas of these strategies can
be found in [3]. Their description is quite often not mathematically well-founded, though.

Unfortunately, after such transformations have been performed, the variational method
is still not directly applicable: It is based on the principle of minimisation, but with com-
plex values, this is clearly no longer meaningful. Thus a generalised principle has to
be derived. It can be based on stationarity instead and can be formulated also in the
non-Hermitian setting. The stochastic variational method works by generating candidate
basis functions based on randomly chosen values for the non-linear parameters, and then
selecting the choice that is best according to the minimisation criterion. This has to
be adapted to work with complex values and stationarity instead of minimisation, too.
Thus, one has to find a new selection criterion that allows to choose good values for the
non-linear parameters in the extended situation. In the following, our principal aim is to
find a well-founded mathematical formulation of these methods, and to demonstrate that
the stochastic variational method can indeed be generalised and applied to the situation
of resonances.



2 Complex Energies in Quantum Theory

In we give a short overview of the principles and notions of quantum mechan-
ics. Our discussion follows standard text books on this topic, such as, for instance, [4].
In the further sections of this chapter, we will introduce scattering theory and show how
complex values for energies arise in its mathematical description.

2.1 Conventional Setting

It is commonly known that in quantum mechanics the state of a physical system can be
described mathematically by a (normalised) vector in some underlying Hilbert space H,
see also [I]. In the so-called Schridinger picture, time evolution is described by assuming
that this vector depends on time as a real parameter and that the evolution of the system
is governed by the time-dependent Schrodinger equation

z’hi\lf(t) = HU(t). (1)
dt
H is called the Hamiltonian of the system and can also be understood as the generator of
the time-evolution semi-group of At the same time it corresponds to the total energy
of the system as an observable, and consequently it is naturally assumed to be a Hermitian
operator. Here and in the following, we restrict our considerations for simplicity to time-
independent Hamiltonians. The total energy is usually decomposed into a kinetic and an
interaction part. For the simplest case of a single particle in an external field, this yields
the canonical form of H represented as
2
H=——A+V
2m
in position space, where the kinetic-energy part is the Laplacian. If the potential is
assumed to be local, V becomes a multiplication operator such that

(V) (2) = Viw)u(a)

for every ¢ € H and a potential function V. Thus the Schrodinger equation reads
explicitly as

ih%\ﬂ(t, x) = —%A\P(t, x)+ V(x)¥(t, ). (2)

By performing the transformations

x t
== -, tr—>r=8
a

and dividing the whole equation by some ¢ we can make it dimensionless if a has the
dimension of a length, d of a time and € of an energy. These transformations result in

. h 0 h?

2mea?

AV(7,) + V(€)¥(7,€), (3)




where V(£) = m = @ In other words, if we find a solution ¥(r,¢) of then
U(7(t),&(x)) also solves and vice-versa. In addition to being dimensionless, the
parameters a, d and e can furthermore be chosen in such a way that the constants disap-
pear and the remaining equation (after renaming the variables back) is the dimensionless

Schrodinger equation

0 1
zalll(t, T) = —§A\I/(t,x) + V(x)¥(t,z). (4)

The Hamiltonian then takes the form
~ 1 ~
H = —§A + V. (5)

This convention will be used below to simplify the expressions and to clearly point out
the essential structures in contrast to issues related only to a particular system of units.
The equation can be solved formally using the time-evolution operator e ‘.
According to Stone’s theorem (Theorem 3.1 on page 288 of [I]), this operator is unitary
if H is self-adjoint. Thus, it also preserves the normalisation condition of U(t) over time.
However, in order to actually ewvaluate the exponential function of H , one can use a
spectral decomposition of the Hamiltonian. In particular, ansatz functions of the form

U(t,z) = e () (6)

are solutions to whenever FE is in the spectrum of H and v the corresponding sta-
tionary state, i. e., R
Hy(z) = Ey(z). (7)

Of course, also superpositions of solutions of the form @ are solutions, since is a
linear equation. The relation , which is just the eigenvalue equation for H, is called
the time-independent Schrodinger equation. By @ it can be seen that each solution
of it corresponds to a stationary solutionﬂ of . If we consider in particular the discrete
spectrum of H consisting of energies F, and eigenfunctions 1, those states are called
bound states and very often of significant physical importance. A famous example is that
of atomic spectra, where the values of F, can readily be measured in experiments and
the agreement with those experiments finally gave quantum theory its justification.

These bound-state energies FE,, are real quantities since they are the eigenvalues of a
self-adjoint or at least Hermitian operator H, see also Theorem 5.1 on page 227 of [1].
In contrast to this conventional framework of quantum mechanics, we want to outline
in the sections below that it is sometimes interesting to consider also for complex
eigenvalues. This is in particular useful to describe resonance phenomena, but the price
to pay is that we then have to deal with a Hamiltonian H that is no longer Hermitian
(it may still be Hermitian on the usual Hilbert spaces such as L*(R™), but eigenfunctions
1y, corresponding to non-real E,, € C are not contained in them in this case). It is even
possible to turn bound states with real energies “continuously” into resonance states
corresponding to complex eigenvalues of by only changing the depth of the potential
of a system, as we will see in

L “Stationary” means in this case that the only time dependence is in the complex phase e ~*#*, which
stems from the wave nature of quantum mechanics. It does not, however, influence the probability
distribution of finding a particle at a particular position.



2.2 Poles of the S-Matrix

A very interesting phenomenon in scattering processes is that of resonances. Phenomeno-
logically, sharp peaks appear in the cross section at distinct scattering energies, while the
cross section may otherwise change rather slowly and smoothly with the energy. See, for
instance, Figure 13.1 in [5] for experimental results showing these peaks or for
the results of the simplified model described below. Scattering theory allows a rather
nice and simple mathematical description of this situation, of which we want to outline
the basic ideas below. A more complete description can be found in chapter 13 and
the preceding chapters of [5]. First recall that the partial-wave cross section o; can be
expressed via the phase shift §; by the relation

A (20 + 1)

O'l(k?) = T Sil’l2 51(1{3) (8)

Furthermore, the phase shift itself can be understood as the (inverse) argument of the

Jost function .
Ak) = (k)| e ), (9)

The partial-wave S-matrix can be expressed via the Jost function by

(k) J%. (10)

Under certain assumptions on the potential (for more details, see section 12-¢ of [3]),
these functions can all be continued analytically for £ € C. Now assume that the Jost
function has a zero 4(k) = 0 with Im (k) < 0, or, equivalently by |(10)| that the S-matrix
has a pole at k = k, — ik;, where k,, k; € R are the real and (inverse) imaginary parts of
k and k; > 0. Then by 4(k) = 0, the first-order Taylor expansion of 4 ’around k gives the
approximation

With @ this yields
dAk _
0(k) = —arg (ﬂ) —arg(k — k) = dpg + Ores(k). (11)

The constant offset dy, is called the background phase shift, and d,es(k) the resonant part
of 6. The latter encapsulates the (approximate) k-dependence of ¢; around k, which
is thus given by — arg(k — E). This rather simple expression corresponds to the angle
between the line connecting k to k and the real axis (see . In particular, if &k
lies close to the real axis, it is implied that 0;(k) changes very rapidly when k& moves past
Re (E) along the real axis, and this leads to a sharp peak in the cross section according
to|(8)} The expected cross section following this approximation can be seen for different
resonance positions k and the case of dpg = 0in . The “asymmetry” with respect
to left and right of the centre at k = 1 is due to the factor k% in , but it can be seen
nicely that this becomes unimportant and a sharp peak develops if k lies close to the
real axis. Other possible cases for d;,, are shown schematically in Figure 13.3 in [5], and

7
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Figure 1: The geometric situation for d..s(k) according to the approximation in the
complex k-plane. See also Figure 13.2 in [5].

also the example pictured in Figure 13.7 there seems worthwhile to mention here. To
conclude this section, we want to add a few further remarks without in-depth discussion,
since they are not important for our further goals:

e Of course, using the relation
k’2
E=— 12
2 ? ( )
the cross section can also be expressed as a function of E. Following this, can
be reformulated with some trigonometry in view of the geometric situation depicted
in This way, one can derive the famous Breit- Wigner formula:

g ()
o0(E) ~sin® 0;(F) = 5
(B~ s 8B) =

Here, according to the usual convention, the notation £ = E, — zg is used for the
position of the resonance pole in the complex E-plane. See also (13.4) in [5] and
the surrounding text.

e Resonances can also be interpreted as meta-stable states that can temporarily “cap-
ture” scattering projectiles until they decay again after some time. The phase shift
and consequently the effect on the cross section can then be explained in terms of
a time-delay, see, for instance, the sections 13-¢ and 13-d of [5]. Moiseyev calls
these phenomena “shape-type resonances” and points out in section 2.1 of [3] that
the decay can also be interpreted as the captured particle tunnelling through the
capturing potential after some time.

2.3 Complex Eigenvalues

Above in we have discussed why it is interesting to find poles of the S-matrix
or, equivalently, zeros of the Jost function ,. In order to do so, it is convenient to also
recall the regular solution ¢y from scattering theory, which solves the radial Schrodinger

equation of a (spherically symmetric) scattering problem for some eigenvalue £ = %,
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Figure 2: Plot of the expected cross section in the [ = 0 partial wave according to the

approximation for resonance poles of different distances to the real axis for the case
of 6bg =0.



and is among all solutions uniquely characterised by requiring its asymptotic behaviour
for r — oo to match

uer) = 5 (AR (k) — AR R (k) ) (13)

Here, fALli denote the Riccati-Hankel functions. Note that for £ € R, ¢ is real. The
regular solution is discussed in section 11-f of [5], and the relation can be found
in (11.48) there. Under certain regularity assumptions on the potential, one can again
perform analytic continuation and let £ € C. Of course, this also results in the eigenvalue
E = % being compler. Since we are interested in momenta such that #(k) = 0, i. e.,
where a resonance pole of s; occurs, in light of we have to look for k£ such that

du(r) = Chi (kr) — Cet*" (14)

as r — 0o, where C € C is a generic, complex constant. In other words, we are looking
for eigenfunctions of the Schrodinger equation that satisty outgoing boundary conditions
according to . If we have one, the corresponding complex eigenvalue E (or its asso-
ciated momentum k) provides us with a resonance pole; on the other hand, if we have
a resonance pole with #(k) = 0, we know that the corresponding regular solution is an
eigenfunction satisfying outgoing boundary conditions. Thus, it is interesting to consider
not only real but also complex eigenvalues of the Hamiltonian in particular with out-
going boundary conditions. This relation between eigenvalues and poles of the S-matrix
is also discussed extensively in section 12-d of [5] for bound states and in chapter 4 of [3]
for the general case of complex values.

Now, when we have discussed complex eigenvalues, one may wonder how an operator
like H in , which by common knowledge is Hermitian, can actually have non-real
eigenvalues. The answer to this question lies in the fact that also the underlying space
is “part” of the operator and its Hermiticity. In other words, H of the form may
be Hermitian (it is for a real potential) for ¢» € L*(R™), but it may still also possess
eigenfunctions for complex eigenvalues as long as they are from another space! And
indeed, the resonance wave functions we are interested in are not integrable over the
whole of R because they do not have the necessary fall-off: If k € C is a resonance pole
with k = k. — ik;, where k., k; € R and k; > 0 as before, then the asymptotic behaviour
of the regular solution is, according to |(14)}

P (1) — Ce'*™ = Ce™ . b — oo (15)

as r — o0o. Thus a negative imaginary part of kK makes the function explode exponentially
rather than decay far away from the scattering centre, which certainly means that in
this case ¢y & L*(R™). This creates problems when we actually want to calculate the
eigenvalues (which will be discussed in detail in below).

As a simple demonstration, consider the Hamiltonian in one dimension and with
a real potential, with L*(R) being the underlying Hilbert space. Then Vs trivially
Hermitian on that space because of our requirement that V' (z) must be real for every
x € R. The kinetic-energy part can be handled with integration by partsﬂ which gives

2See also (4.3) in [3] for basically the same example calculation.
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for some interval I = (a,b)

<¢|—%A¢>L2m - -3 / oa) 50(o) da
— =5 (fae@) vl do = 5 oty o]

(50) o5 (o) v - ooy o)

Thus the operator is Hermitian only if we take also the right boundary conditions into
account, such that they make the additional terms vanish! For the space L?(R), we have
that because there integrability implies automatically that ¢(z), ¢ (z) — 0 for x — +o0.

b
+

DN | —

b

a

2.4 Feshbach Reduction and Optical Potentials

Another approach to resonances and the need for non-Hermitian operators is the Fes-
hbach reduction, which leads to genuinely complexr (and thus non-Hermitian) effective
“potentials” termed optical potentials. This procedure was invented by [6], and in the
context of non-Hermitian quantum mechanics it is also described in section 2.2 of [3]. For
an application that explicitly highlights the complex nature of the optical potential, see,
for instance, [7]. Below we describe the basic idea behind this framework, although our
work in the following will mainly be based on the interpretation of resonances as given
already in the sections above.

For outlining the Feshbach reduction, we consider a problem with multiple coupled
channels. For simplicity, let us assume that we only have two channels, and that we thus
consider a product space made up of two subspaces corresponding to each one of these
channels. In this situation, the total state can be described by two vectors, one from each
channel, and we will use the notation ¥ = (¢1,1,)". Then the Schrodinger equation for
this system can be written as

)
Vo1 Hy (B} ()

Here, the Hz denote the free Hamiltonians in the subspaces, and ‘712 as well as ‘721 denote
the interactions between the channels. Note that Vi, = V;l because the compound
Hamiltonian on the left-hand side of should be Hermitian. If we are in fact only
interested in ¢; but do not want to completely neglect the second channel (because it

also influences the first one), we can use the second line in |(16)| to eliminate v, from the
first line. The equation that defines 15 is

(Hy — E)tpy = —Viyy.

The operator H, — E is not invertible for E € R above the threshold since the continuous
spectrum of H, lies there. Nevertheless, we can formally solve the equation for vy, if we
introduce an infinitesimal offset ¢0 to specify the correct side of the branch cut. This
trick yields

N -1~
g = (E — Hy +1i0)  Voy1)y,

11
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thus reducing to
(ﬁl LV (E - Hy+ z‘o)‘lffm) by = Ei. (17)
The “effective potential” appearing here is the optical potential
Voot (B) = V4 (B = Hy +10) Vay.

It depends on E, thus must be solved self-consistently and is not an ordinary eigen-
value equation. f/opt is complex and generally also non-local. It gives rise to an effective
H for the first channel only, which is then non-Hermitian. Compare the above also to (3)
in [7] or page 364 of [6].

2.5 Examples for Resonances

Example 1. A very famous example in quantum mechanics is the square-well potential of
finite depth. It is less well-known that it represents already an example that gives rise to
an infinite number of resonances with complex energies in addition to the finite number of
bound states. Here, we demonstrate the behaviour of resonances in the one-dimensional
case, i. e., for the potential

Viz) = { 0 |z|>a (18)

Vo Jz|<a’

where x € R. Vy,a > 0 are parameters describing the potential’s depth and its width,
respectively. This potential is shown in [Figure 3| A treatment of the bound states for
this problem can be found in exercise 14 of [8], while the resonances are explained, for
instance, in section 4.3 of [3]. Following the classic solution method for the eigenvalue
problem of this system, we can first construct the general solution for each of the three
parts of the domain where V' is constant. This yields

Cetkor 4 Cle=thor o <« g
P(x) = Aeth® 4 Be=** g € (—a,a) (19)
Detkor 4 Dle=ikor 1 > ¢

where k3 = 2E and k? = 2(E + V;), which follows [(12)] As mentioned on we

want to apply outgoing boundary conditions. Thus we require C = D’ = 0 to achieve the
asymptotic behaviour according to |(14), The remaining unknown amplitudes A, B, C’
and D must be chosen to achieve continuityﬂ of v and v)'. Thus the well-known conditions

b(=a”) = ¢(=a"),  Y(a7) = (a”),
V(=a) = ¢(=a’), ¢(a”) = '(a”)

must be satisfied. We adhere to the usual notation of

Y(a*) = ¢(a£0) = lim ¢(z)

z—at

3An alternative explanation is that—as will be explained in the proof of below—we need
¥ € H?(R) according to elliptic regularity when the potential is in L?(R). Here, V is in particular
discontinuous and thus also no higher regularity can be expected.

12
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Figure 3: The square-well potential |(18)| used in [Example 1|

to denote the one-sided limits of a function at a (possible) jump position. In our case of
(19), we can write these conditions as the linear system

_e—ika _eika eikoa 0 A 0

_eika _e—ika 0 eikoa B 0
_kjefika keika _k.oeikoa 0 Cl - 0 (20)
_keika k,e—ika 0 kO eikoa D 0

Since a valid eigenfunction ¥ must be normalisable, we need to find a non-trivial solution
to the homogeneous equation Thus, some E € C is an eigenvalue if and only if the
matrix on the left-hand side of is singular for the values of k£ and ky that correspond
to this F. This is in turn equivalent to requiring that its determinant vanishes. Thereby
we get a characterisation of the eigenenergies, and it is possible to locate them numerically
simply by trying out possibilities for E' on some grid and checking for zeros of the matrix
determinant [

For the parameters chosen as V) = 10 and @ = 5 in , the eigenvalues satisfying the
singularity condition are shown in [Figure 4 Compare especially the dots corresponding
to resonances (those with Re (F) > 0 and Im (F) < 0 in the right half of the figure) to
Figure 4.2 in [3]. For these parameters, there exist 15 bound states and the resonance
states start at n = 16. Note that Moiseyev uses a potential shifted by a to the right with
respect to but this does not affect the eigenvalues. The wave functions for selected
eigenvalues of bound states and the first resonance state are shown in [Figure 5 It can be
seen that as we continue to higher bound-state levels, the number of oscillations in the
wave function increases such that there are always exactly n maxima. This is a common
pattern in quantum mechanical problems, which can, for instance, also be observed with
the square-well potential of infinite depth or the harmonic oscillator. When we cross the
imaginary axis to the resonance states, this pattern continues (when the function’s infinite
rises at the left and right sides are also counted as two maxima). This is a nice indication
that resonances and bound states are related, see also below. However, the
difference between both cases is that the wave function suddenly no longer vanishes for
|| — oo. Instead, it grows exponentially as it should according to the argument on
page 10|

Example 2. Continuing with [Example T| we also show here how a bound state changes
into a resonance when the potential is made shallower (in other words, when Vj is de-
creased). See also section 13-b of [5] for a theoretical treatment about this behaviour in

4More elegant conditions for bound-state and resonance energies can be found in (14.8) of [§] and in
(4.27) of [3], respectively.

13



Figure 4: Eigenvalues for the square-well potential of with Vy = 10 and a = 5.

general. For the numerical demonstration, we use again the square-well potential
with a = 5, and let V vary from 1 down to 0.1 while tracking the movement of the n =5
eigenvalue. At V) = 1, it is a bound state with E5 ~ -0.414, which then turns into a
virtual state somewhere above V) = 0.4. The eigenvalue depends continuously on Vj, and
thus one can “follow” its movement by changing V{ at each step only so little that we find
precisely one (changed) eigenvalue in some small search window around the old position.
If the step in Vj as well as the size of the search window are controlled correctly, this
allows to precisely trace the movement of our selected eigenvalue with arbitrary precision.
The resulting path is shown in in both the k- and E-planes, and two critical
events along the path have been marked with circles: The red circle is at the origin,
which means that at this position the bound state turns into a virtual state. At this
moment, the pole changes from the physical to the unphysical sheet of the E-plane. The
blue circle marks the point when it leaves the negative imaginary k-axis (or, equivalently,
the real F-axis). It may also be interesting to note that when the speed of movement
in the F-plane is measured, those two points correspond to minimal and maximal speed,
respectively. One may also want to compare this figure to Figure 13.5 in [5], which de-
picts the expected behaviour during the transition from a bound to a virtual state for an
s-wave. This also applies here for our one-dimensional problem. Note that the analysis in
[5] is done based on a series expansion around the transition point, which does not allow
definite statements about the further development of the eigenvalue beyond the region of
convergence of this series. Our result that the eigenvalue eventually leaves the negative

imaginary k-axis (as shown in [Figure 6)) is thus not in contradiction to [5].

14
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Figure 5: Wave functions for [Example 1| corresponding to selected eigenvalues.

15



Im

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Im

-0.15 - —

~0.25 ! ! ! ! ! ! !
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Re E

(b) Path in the E-plane.

Figure 6: Movement of the n = 5 eigenvalue for the square-well potential when the
depth Vj is changed as explained in [Example 2] The same path is shown both in the k-
and FE-planes, and the positions where the bound state becomes a virtual state as well
as when it leaves the imaginary k-axis have been marked.
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Example 3. As another example of a real potential developing resonance states (complex
poles), consider

2

The parameters are chosen as J = 0.8 and A\ = 0.1. This particular potential is well-
suited because of multiple reasons: First, V' as given in is a nice and smooth (in
fact, analytic) function. That allows us to apply complex scaling to it (see
below). Second, this particular problem has already been studied before and independent
numerical results for the eigenvalues are available, for instance in [9] ]

The potential admits a single bound state, and shows how the potential
looks like with the bound-state energy level marked by the red line. In the
eigenvalues are shown together with the results of [9], available for resonances with odd
index n. In general, good agreement is found in the comparison of our results to the ones of
[9]; only for the state with n = 17 there is a noticeable deviation, whose cause is unclear.
The results here were found with a finite-difference discretisation of the Hamiltonian

together with complex scaling, similarly to below.

Viz) = (1;1;2 - J> e (21)

®Note, however, that in this paper the potential has an additional offset J added to it in comparison
to [(21)l This results in a corresponding shift of the eigenvalues, which, of course, has to be taken into
account when comparing the results.
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(b) Our eigenvalue results together with those of [9] (green crosses).

Figure 7: The potential on top and the corresponding eigenvalues below. Green
crosses mark the eigenvalues given in [9], which are available only for resonances with

odd index.
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3 Similarity Transformations of the Eigenfunctions

As mentioned already in above, the usual setting in Hermitian quantum
mechanics is to consider the eigenvalue problem of the Hamiltonian operator H on some
underlying Hilbert space. In particular, the Hilbert space is usually based on L?*(R™),
so that the Laplacian and thus also H are closed but not bounded. In contrast, in the
following we consider the setting as

H: H*(R") — L*(R"),

which is now, due to a restricted domain, a bounded linear operator between the two
Hilbert spaces. It holds that H?(R™) C L?(R") with compact embedding, but not equality
between the spaces. Nevertheless this is enough to define the eigenvalue problem in a
meaningful way. In fact, if we consider below, it will become clear that this
is no restriction at all for solving the eigenvalue problem, since eigenfunctions in L?(R")
must automatically lie also in all higher Sobolev spaces (including, in particular, H?(R")).
The notation H? and in general H* is used in accordance to the literature about PDEs
to denote the Sobolev spaces of (equivalence classes of) functions with square-integrable
weak derivatives up to order s (see, for instance, chapter 5 of [10])E] Where not explicitly
specified, norms and inner products are always meant in the space L?(R") in the following.

In the case of resonance eigenfunctions, however, as seen above in it can
happen that the eigenfunctions we are interested in do not lie in such a Hilbert space.
They may be smooth enough, but not integrable over the whole space if they lack proper
decay properties. Nevertheless, it is clear that an operator like H of (with a local po-
tential represented by a multiplication operator V) can be defined for functions that are
in a space like H*(K), even if K is not the full coordinate space R™ but only a compact
subset of it. This is possible because decay properties do not play a role for those Hamil-
tonians. In fact, if one considers an operator that is Hermitian on a Hilbert space but
also has complex resonance eigenvalues, it is clear that the corresponding eigenfunctions
must be outside of the Hilbert space. Unfortunately, this situation introduces a technical
difficulty: We no longer operate on Euclidean, normed or even metric spaces, but have
to content ourselves with only a topological vector space. In this chapter, we will discuss
techniques that can be used to transform the situation back to an operator on a Hilbert
space, such that also its eigenfunctions corresponding to complex resonance eigenvalues
are within the new Hilbert space. Of course, in order not to violate the “no-free-lunch”
theorem (as well as the obvious property that Hermitian operators on a Hilbert space
have only real eigenvalues), one has to pay a price; namely, the transformed operator will
no longer be Hermitian. This is the case either because it loses its symmetry or because
it becomes complex. A general discussion of these transformation techniques can also be
found in chapter 5 of [3].

6Commonly, the index s is used for Sobolev spaces of fractional orders, while k is used for integer
orders. We only need s € N, but use s nevertheless instead of k because k is used to denote the
momentum.
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3.1 Similarity Transformations

The general situation considered is always this: Let Uy, Wio be topological vector spaces,
and U, W be Hilbert spaces. We are interested in a linear operator H: Uloe = Wiee. Since
in particular we want to find eigenvalues, assume that Uy, C Wi, as well as U C W.
Then we want to transform H to H' : U — W, such that the eigenvalues remain the same
for H and H’, and can be calculated on the Hilbert-space setting of U and W instead
of the topological spaces Uy, and Wj,.. The most common scenario is U = H?*(R"),
W = L*(R"), Ui = HZ (R") and Wi = L2 .(R™), but also more general choices may be

useful in practice. Next we develop our strategy more precisely and in detail, partially
following [3].

Definition 1. Let $ : Wiee — W be linear anq bijective with tbe inverse S—!. Let
furthermore U, be “invariant” in the sense that S (Uioe) = U and S™! (U) = Uje. Then
S is called a similarity tmnsformatio and we write

W =Sy, H =SHS™. (22)

Here, for the transformed vector and operator we have clearly ' e U for ¢ € Uy as well
as H' : U — W.

As a fundamental property of such a similarity transformation (also known from the
matrix case in linear algebra) on has:

Theorem 1. Let S be a similarity transformation according to . Then the sets
of eigenvalues oflff and H' are wdentical, with the eigenvectors to a common eigenvalue
transformed to each other via S and S7'. In particular, eigenvectors of H' lie all in the
Hilbert space U.

Proof. Let A € C be an eigenvalue of H. Then there exists ¢ € Uy, with Hy) = Aib, and
consequently with ¢/ = S we have:

H = SHS™ . S = SHYp = ASy = M.

Thus A is also an eigenvalue of H' with eigenvector ¢’. The reverse direction also holds
by the same argument using S O

3.2 The Zel’dovich Transformation

As we have seen in , a common cause for non-integrability of resonance eigenfunctions
is exponential divergence like e*” for r — oco. The so-called Zel’dovich transformation
(see, for instance, section 5.1 of [3]) is a direct answer for functions that diverge like
that. Since far away from the centre, where the potential is influential, not much relevant
information is contained in the wave function anyway, it can be damped out without
noticeable effects. The Zel'dovich transformation is thus simply a multiplication operator
with a strongly decaying weight.

"This is similar in spirit to the notion of similarity transformations of matrices on finite-dimensional
vector spaces, but we are not aware of a widely used generalisation of this concept for infinite-dimensional
spaces. Thus should be understood as the particular meaning we want to give to this term
for the present work only.

20



Definition 2. Fix some real € > 0. We define the Zel’dovich transformation as
W = Sap = ey

Thus in the spatial representation of a wave function, this is indeed just multiplica-
tion with a smooth, bounded and decaying weight. Furthermore, let us also introduce
Zel’dovich spaces:

H3(R™) = {¢:R”—><C | e—erw}eHs(R”)}, s=0,1,....
For L?(R"), we can define an inner product as

(Wlo), = (e vles), (23)
and, of course, analogous definitions are possible for higher-order spaces with s > 0.

Note that defines in fact a whole family of transformations, depending
on the parameter €, which can be varied in applications. The same will also be true later
for complex scaling (in [Section 3.3)). It is easy to verify that this transformation behaves
indeed as expected:

Theorem 2. For s =0,1,... and € > 0, H*(R™) with the inner product defined in
1s a Hilbert space. Furthermore, if €, > €5 > 0, then

H*(R™) Cc H: (R") C H (R")

with continuous embedding, and also HE(R™) C Hj (R™). In the latter case, the em-
bedding also “respects” the topology in the sense that convergence in HE(R™) implies

convergence in Hj (R™).

Proof. It is enough to consider s = 0; the case s > 0 follows by the same arguments.
It is trivial to see that |(23)| fulfils the linearity and anti-symmetry required for an inner
product. Also,

W), = (e "vle™v) > 0

for every ¢ € L*(R™), with equality holding only if e’y = 0. By the basic properties of
the exponential function, the latter equivalently means i) = 0. Hence, (:|-)_1is a valid inner
product on L?(R™). Now, if (¢,) C L%(R"™) is a Cauchy sequence, by |(23)| also <e‘”2wn>
is a Cauchy sequence in L?(R") and thus, since L?(R") is complete, it is convergent. Call
the limit ¢ € L2(R"), and note that first 1) = e’ € L*(R") and second

2 2

2
— 0,

46 = 61 = [} (0 = )

— Hefera,l/}n _ 'l//

wherefore also (1,,) C L?*(R") is convergent with limit 1. This proves that L?(R") is
indeed a Hilbert space.
For the embeddings, note first that we always have

0 < e < e’ < 1.
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Thus also for an arbitrary, measurable function 1, it holds that

[9lle, < Nlle, < N1

This implies the continuous embeddings. If we, on the other hand, fix a compact set
K C R”, then we find a uniform lower bound 0 < m < e~ valid on the whole of K.
Thus the other way round, also

1]

L2(K) >

1
920 < —

which shows that L?(R™) C L2 (R™) and convergence in the former implies convergence

in L?(K) for each compact K, thus convergence in the topology of L2 (R™). O

loc

It is clear that a function behaving like e for » — oo belongs to L?(R") for arbitrarily
small € > 0. Therefore, this especially important class of eigenfunctions can indeed be
“captured” using the Zel’dovich approach. However, working with the new, exotic spaces
and inner products is cumbersome. Instead, one can also use the transformation S, in

the sense of the general framework in to transform the situation back to the
ordinary spaces H*(R™). This is made rigorous by the following result:

Theorem 3. For every e > 0 and s = 0,1,..., the operator S : H*(R") — H*(R") is
Sll=1. In fact,

linear and bijective. It is also bounded with )

(8l). = (SolSw)

and thus actually
| 5w = Il for att v € L2R).

The same property also holds for s > 0. Furthermore, S. fulfils the requirements of

for every e > 0 when we set
Upe = H(R™) C Wy = LA(R™), U = H*(R") ¢ W = L*(R"). (24)

Proof. Tt is clear that S, is linear, and also, that it maps H*(R") to H*(R"). In fact, this
is basically the definition of H?(R™) according to [Definition 2| On the other hand, for
every ' € H*(R") we know that

w _ €6r2¢/ _ S€—1¢l e Hf(Rn),

so that S, is also bijective. The claim about the inner product and consequently the norm
follows by , which also implies directly the boundedness of S.. Finally it is also clear
that with the spaces of , S, fulfils O

Note that it is important to choose the parameter e suitably. In theory, every € > 0
is good to transform away exponential divergence of wave functions. However, a large
e washes out relatively much information and may thus lead to inaccurate results. On
the other hand, a small € does not damp the divergence sufficiently, what may lead to

numerical instability. Obviously, for € — 0, the transformation converges to the identity
mapping, which is shown by the following result:
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Lemma 1. Let s = 0,1,... and v € H} _(R"). Then Sab — 9 for e = 0, where the

loc

convergence is in the topology of H; (R™).

loc

Proof. Fix K C R" compact. Then for the weight we have
e s 1fore—0

at arbitrary x € K pointwise, thus also uniformly on K. This implies that 6_67’21/1 —
in H°(K). m

Finally, let us assume that we indeed have a Hamiltonian of the form with a real
potential. Then, as is commonly known, H is a Hermitian operator when considering the
spaces H?(R") — L*(R™). This is, however, no longer the case if we apply the Zel’dovich
transformation in order to extendﬂ the eigenvalue problem to cover also eigenfunctions
originally only in H2(R"). Let v, € H?(R") be given. Then

) & 11 O— 1 —er? er?

(Hap)(@) = (SHSTV)(@) = =5 A (70 (@) + V(@)(o)
eV - ((V@De(a:) + 2et).(x)x) e“"2> + V(x)(x)
= —= (Vihe(x) - 2ex + 420 (2)r* + 26V (2) - & + 2nee(x) + Avhe(z)) + V (2)he ()
= Hip(x) — 2eVip () -z — (26°r% + ne) Y (x).

N — DN -

So the Zel’dovich-transformed operator is still real, but no longer symmetric. The term
in the middle of the right-hand side, containing the plain gradient of ¢, (which appears
because of the Laplacian being applied to the weight term e to the right of it), destroys
the symmetry. This is the price to be paid in order to allow exponentially divergent
eigenfunctions, corresponding to complex resonance eigenvalues.

3.3 The Complex-Scaling Transformation

Another very successful transformation is complex scaling, often also called complex-
coordinate method. 1t was already introduced in [II], and is extensively discussed in
section 5.2 of [3]. A treatment of its mathematical properties can be found in [12].
For simplicity, we will restrict ourselves here to only one dimension, but all can also
be extended to multiple coordinates in a straight-forward way. To show the basic idea
behind complex scaling, let us consider again the example of a resonance wave function
behaving like

() ~ et (25)

for © — oo, where k € C is some complex momentum. As discussed already on [page 10]
the question of whether or not this diverges is directly tied to the sign of Im (k): Divergence
occurs if and only if the imaginary part of k is negative. The goal of complex scaling is
now to apply a transformation that makes Im (k) positive via a rotation in the complex
plane. This goal can be reached if we replace k by k' = €k, where § > 0 is a positive

8Note that the transformed operator H., is not an operator extension of H. In fact, H., is defined only
on H?(R™), which is a smaller space than the domain of H where the original eigenfunctions lie.
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angle large enough for some particular k (at least § > |argk|). In light of [(25)] this
transformation can equally be achieved by replacing x with 2/ = ez; this makes it
clear why the transformation is also called “complex-coordinate” method: The spatial
coordinate is extended into the complex plane. If the wave function is analytic, this can
be done via analytic continuation. The necessary mathematical details will be developed
in the following.

Definition 3. For 6 > 0, we first define
Dy = {ei(”x |z €R,0 € [o,e]} , D_y= {ew’x |z €R,O € [—9,0]} .

Dy and D_4 are both sectors in the complex plane. Assume that V' can be analytically
extended onto both of them, and set

Uig ={¢: R — C|Re(¢) and Im (¢)) can be analytically extended onto Dy} .
Then we define 5'9 Uy — U_y by

(Sov) (@) = ¢/'(x) = & ("x), (26)

where ¢ is the analytic continuation of 1 (i. e., its real and imaginary parts) onto Dy.
This is the complex-scaling transformation.

Theorem 4. Sy of |(26) is a linear and bijective operator with inverse ggl = S y. If
Y € Up and Y(z) — hoo(x) for @ — oo with o like [(25), where argk € (=0, 7 — 0),
then Sgip € H*([0,00)) for all s = 0,1,.... In particular, Sg1p decays exponentially for
x — 0o. A similar property is, of course, also valid for x — —oo with ¥_.(z) ~ e~*2,

Proof. Linearity is clear by [Definition 3] as is the inverse mapping. For proving the decay

properties it is enough to consider 1, (z) = ¢**. Clearly,

(Sg@boo)(x) = exp (ieiek‘x) = ¢*'®

where &’ = ¢k and thus Im (k') > 0. From this it is clear that Syibs, € H*([0, 00)), since
the necessary smoothness follows from 1 € Uy with its requirement about analyticity. [

With [Theorem 4} it is easy to see that also Sy fulfils the basic requirements of
inition 1] For the spaces, similarly to [Definition 2] we can take the space of all those
1 € Uy such that ggw € L*(R), as well as the resulting image space. While the image
is not strictly a Hilbert space, it can, of course, be embedded (by definition) into L?*(R)
and we do not really need surjectivity of the similarity transformation onto a complete
space. Still remaining is, however, the issue of analyticity: In order to apply Sp, we need
to be able to extend 1 to complex coordinates. Thus it is important to know whether or
not the resonance eigenfunctions we are interested in actually fulfil this requirement. At
least a partial regularity result in this direction can be deduced by elliptic regularity:

Theorem 5. Let V € C*(R), H = —sA+ V and assume that E is an eigenenergy for
some state ¥ € H2 (R), i. e., Hi = Ev. Then also 1 € C"O(R)ﬂ

loc

9Unfortunately, does not imply that v is even real-analytic, let alone that it can be
continued analytically onto some region Dy. There exists a result about elliptic regularity (see page 21
of [13]) that implies real-analyticity of the solution of [(27)| if the right-hand side is real-analytic. This

cannot be used in the argument of the proof of though.
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Proof. Pick xy € R and an open interval I = (a,b) around . Then ¢ € L?(I), and we
know that it solves

- %Aw(x) = (E —V(x))Y(z) in I, 1¥(a),1(b) given on the boundary OI of I. (27)

Since the right-hand side is in L*(I), elliptic regularityf"] tells us that in fact 1» € H2(I).
Continuing this with a bootstrap argument implies that » € H*(I) even for all s € N
and thus by the Sobolev embedding theorem (Theorem 6 on page 270 of [10]) we find
1 € C=(I). Alternatively, this result is also directly implied using Theorem 3 on page
316 of [10], which is based on the same arguments as presented above. O

Similarly to the discussion in the end of [Section 3.2, we now show how the transformed
operator Hy looks like (see also to (5.144) in [3]):

(o) @) = SISy 00)(w) = ~58080 () + 80V (@ () g
= —2e 0 AyYy(x) + V (") ()

Thus the kinetic-energy term gains a complex phase factor, and the potential is subjected
to a complex rotation; especially for the latter one needs that V is analytic. This is
an important restriction, since it rules out, for instance, the square-well potential .
Contrary to the Zel’dovich transformation, the Hamiltonian now becomes complex. On
the other hand, the operator stays “symmetric” in some sense (see [Definition 4| with |(36)|
for a more precise statement).

Since the application of the complex-scaling operator Sp requires analytic continuation
and this method is thus not directly applicable to non-analytic potentials, it is interesting
to look for generalisations of this idea that work for a wider range of problems. Accepting
some additional complications, it is possible to perform complex scaling only further
away from the scattering centre. Thereby, the exponential divergence is still avoided,
while the transformation can be applied as long as V' is analytic outside of some compact
region. This makes the procedure applicable also to the square-well potential, for instance.
These corresponding techniques can be found in sections 5.3 and 5.4 of [3] and are called
(smooth) exterior-scaling transformations. Also numerically the analytic continuation is
difficult, while it is usually not necessary if an analytic potential is given. However, if
it is performed “backwards”, it can be used to find the original wave function from the
eigenfunction of Hp. This can be useful in cases where also the eigenfunction and not
only the energy is of interest.

In the following, we want to briefly describe two alternative approaches to complex
scaling, although neither one worked satisfactory in our test calculations. Nevertheless,
they are interesting from a theoretical point of view.

3.3.1 Complex Scaling as a Time Evolution

Using the power-series expansion of some analytic function ), it can be seen that Sp can
be formally written as

A 0
- 0z — ) . P
Sy = exp (z@xam) (29)

10See, for instance, section 6.3 of [I0] and in particular Theorem 2. While these results are usually
used for real-valued functions, we can apply them here to the real and imaginary parts separately.
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This can also be found with more detail in (5.14) in [3]. In the form |(29), however,
Sp can also be interpreted as the time-evolution semi-group of the degenerate parabolic
differential equation

O o) = ia -0, 1), 9(a,0) = V(). (30)
If the solution is known, then S’gw = ¢(-,0). This can be readily verified by plugging the
candidate solution ¢(z,t) = v (e’x) into [(30)} Also the method of characteristics (see
section 3.2 of [10]) applied to results in exactly this solution—if it is known already
that ¢ can be extended analytically to the points e®x. One can go even further and
rewrite the complex equation into a system of two completely real functions:

wle)=( 7)) )

where ¢(x,t) = v(x,t) + iw(x,t) and the same for the initial condition. It is easy to see
that is completely equivalent toif this splitting of ¢ into real and imaginary parts
is done. Each equation can be propagated numerically in time using some time-stepping
method coupled with a spatial discretisation, but it turns out that this is quite instable;
it works to transform Spi) back into 1 on a coarse grid and if not too many time steps
are performed (although consequently with low accuracy), but the numerical propagation
broke down in our calculations for smaller steps. Standard theory for parabolic equations
(see section 7.1 of [10]) does not apply here either, because the equations are degenerate
and do not contain any elliptic operator. One might try to add a regularising term eA¢
on the right-hand side of similarly in spirit to the vanishing-viscosity method (see,
for instance, page 540 of [10] and in particular (2) there), but we have not tried that.
Viscosity solutions in the usual sensdﬂ also cannot be applied here because they crucially
depend on the ordering of the real numbers. Thus one is not able to use this notion (to
our knowledge) for complex equations or for systems of equations.

3.3.2 Complex Scaling via the Fourier Transform

Another approach to performing the complex-scaling transformation on some function
is via the Fourier transform: For ¢ € L?(R), the Fourier transform is given by

9O = [ vy do
R
Then, by the Fourier inversion theorem, we can recover ¢ from 12 via

(z) = /R D(E)emr de. (32)

This result as well as other useful properties of the Fourier transform are well-known, and
can, for instance, be found in section 4.3 of part III of [I]. Note that in the latter formula

HSee, for instance, [14] or [15]. For the standard definition, the notions of sub- and supersolutions are
necessary, which in turn depend on comparisons. Also the comparison principle is a major tool, which
cannot be applied to complex equations or to systems of equations.
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x appears only in the exponential, wherefore we can use to make the substitution
x +— ez in a straight-forward way and arrive at

(5) @) = [ Deye=ee ae. (3)

This method (not specific to complex scaling, though) is also proposed in [16] as a strategy
to perform an analytic continuation numerically, although it did not work in our numerical
tests for complex scaling (even less so than propagating backwards in time which
worked to some extent as described above in |[Subsection 3.3.1)). However, we can, at least,
give a sufficient condition for being well-defined, which is based on the remarkable
connection between the smoothness of a function and the decay properties of its Fourier
transform:

Theorem 6. Let x denote the convolution operation between two functions, and assumd’)
that there exist U € L*(R) and € > 0 such that 1) = W x e~ Thenm is well-defined

for all x and
(800) @) < Cwetner, (34)
where C. is a (generic) constant depending on € but not on ¥, ¢, 0 or .

Proof. We shall show the estimate|(34)], since this then 1mphes integrability in|(33). Note

first that the Fourier transform of the heat kernel e=** equals
— ) 2

e~? = C.e ¢ where € = — > 0.
€

Thus by the convolution property of the Fourier transform and the fact that it preserves
the L?-norm, we get

96 = CUOe = [de| =

This expresses the well-known fact that the smoothness property of ¢ translates to the
Fourier transform in such a way that ¢ falls off quickly. Let us now introduce

er = c+is, where ¢ = cosf - x and s =sinf - x,

= Ce ||vl]. (35)

for ease of notation. If we use this in |(33)] we find

( Sot) ( / D(E 27rz§ (c+is) de = / b(e 27rz§c —2n€s ¢

Taking the absolute value gives

‘ Sew /’¢ “6271'Z§C|€727l’§s de = /)w

Furthermore, we can use |(35)] m and a simple Calculatlonﬁ yielding

2.2
s

= C, exp( - ) = C.e
€

together with the Cauchy-Schwarz inequality to get the claimed estimate |(34)] O]

l

676/5267271'58 df

g2
He 5{6 27€s

12The assumption here means that ¢ can be regarded as solution of the heat equation with L2-initial
data at some later time. In particular, ¢ € C*°(R) must hold.

13This, as well as the Fourier transform of the heat kernel used above, can be done symbolically with
Maxima [I7].
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3.4 Numerical Demonstrations

In this section we want to demonstrate the performance of the transformations (Zel’dovich
transformation and complex scaling) considered above by means of numerical examples.

We adhere again to the one-dimensional problems introduced in [Section 2.5|

Example 4. While the Zel'dovich transformation works in principle, it is not very ef-
ficient and stable in practice. At least for the cases we tried out, the results were not
satisfactory. Consider the square-well potential of again. It was already dis-
cussed above, how the resonance wave functions can be calculated in the usual way. Of
course, it is easy to also calculate the transformed wave functions, simply by multiplying
them with the Zel’dovich weight. Before we can evaluate the Zel’dovich-scaled Hamil-
tonian (expressed in a finite basis of Gaussians, like those described in [Subsection 4.2.1|
below) on it, we also have to express the known exact wave function in this basis. That
was done by means of a fit with minimal L?-norm error (i. e., by a least-squares criterion).
Given the resulting coefficient vector, we can verify how well it satisfies the eigenvalue
equation of the transformed operator in our basis. If H and S denote the matrices of
the Hamiltonian and overlap matrix elements, respectively, and a € C" is the vector of
coefficients calculated by the fit, then we want the discretised eigenvalue equation

Ha = FESa

to be fulfilled for the resonance energy E in each component["] If we do not yet know E,
the energy can be calculated from the quotient of the left- and right-hand sides of each
component equation separately. It turns out that most of those values actually approxi-
mate the correct energy well, but some are completely wrong. By taking the median of
all real and imaginary parts appearing for all components, this gives quite good an ap-
proximation, confirming that the Zel’dovich transformation must actually be somewhat
correct. On the other hand, calculating the energies via the eigenvalue equation directly
does not work well because of some instabilities. It is also crucial to choose the correct
parameter €, as can be seen from [Figure 8af The parameter values shown there are the
ones for which the result is near the exact resonance position, but they are from a rather
narrow range. If € is outside of this range, the resulting approximate eigenvalues are far
from the exact position. [Figure 8b|shows the corresponding (transformed) eigenfunctions.
It can be seen that they fall off quickly for |x| — oo, if € is large.

Example 5. Consider again the problem of [Example 3| in [Section 2.5 As mentioned
already there, it can be solved numerically with the method of complex scaling. Note,
however, that for § > 7 the potential becomes unbounded as then Re (—)\em) > (0. While
this is a problem in theory, we did not observe any problems caused by it in practice.
Furthermore, even if we chose only 6 < 7, this would already be large enough to make
a lot of the lower resonances accessible. For the numerics, we discretised in space with
finite differences and 2,000 grid-points. For the Laplacian, we assumed homogeneous
Dirichlet boundary conditions. While we are in fact solving on the whole real line, this
is not a problem because after scaling, per construction the solutions will have (nearly)
zero values at the boundary of a sufficiently large but finite spatial interval.

14Gee also and below, although the context there is for complex scaling and not the Zel’dovich

transformation.
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Figure 8: Approximations to one of the resonances in the square-well potential (black dot

in the top figure) for different Zel’dovich scaling parameters €, as described in [Example 4
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shows the results, with the approximated eigenvalues in the top figures and
the eigenfunctions corresponding to low resonances in the bottom. It can be seen how
different scaling angles affect the outcome. The red line denotes —26, which gives the
region in the energy plane (since £ ~ k?) that is already accessible with the given
scaling angle. It can be observed very nicely how with increasing scaling angle more
and more resonances are captured correctly. Note also how the eigenfunctions behave;
it is particularly interesting to compare 6§ = 0.17 and 0.27, where the resonance pole
corresponding to the wave function shown in black is just crossed by the scaling angle.
While the eigenfunctions change with the scaling angle, the eigenvalues stay the same.
This is a fundamental property of a similarity transformation, as explained in
above.
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4 Variational Methods for Resonances

When the transformations described above in [Chapter 3|, and in particular the complex-
scaling method, have been applied, it remains to solve the resulting non-Hermitian eigen-
value problem. A simple way to do so is an ordinary spatial discretisation, for instance
with finite differences as has been done in [Example 5 However, in particular for higher-
dimensional spaces, the computational costs of those methods rise quickly and exponen-
tially with the number of space dimensions (the so-called “curse of dimensionality”). For
these cases, variational methods are often more efficient and practical. We want to focus
in particular on the stochastic variational method [2], which is able to handle non-linear
variational parameters. The idea is to stochastically (in spirit somewhat similar to a
Monte-Carlo method) generate a finite basis of functions adapted to a particular given
problem, rather than using a basis corresponding to a straight-forward systematic dis-
cretisation. If a good criterion for selecting the basis functions can be devised, this ensures
that the chosen basis will indeed be very well suited for the problem at hand, similarly to
applying adaptive methods on a spatial grid. In this chapter we want to develop such a
variational method for complex-scaled Hamiltonians. discusses a variational
principle that generalises the Rayleigh-Ritz theorem to complex eigenvalues.
introduces the specific choice of basis functions we will use, while is devoted
to the crucial issue of selecting some basis functions over others. Finally, gives
numerical results for an example problem in order to demonstrate the actual performance
of the discussed selection procedures.

4.1 A Generalised Variational Principle

As the name already tells, a variational method is based on the idea to “vary” an ansatz
in order to find the best approximation of an eigenfunction searched for. The theoretical
foundation for the classical variational method is the Rayleigh-Ritz theorem:

Theorem 7. Let H be Hermitian and E; € R be the lowest eigenenerqy. If ¥ is an
arbitrary state, it always holds that

W) —
Equality holds if and only if 1 is an eigenstate of H with energy Ey, i. e., Hip = E11.
Proof. See Theorem 3.1 in [2]. O

However, already at first glance it should be clear that this result cannot be directly
generalised to a non-Hermitian operator with complex energies, because, when the eigen-
values are no longer real, it does not make any sense at all to talk about “minimisation”
or an ordering. Instead, we will see in that a possible generalisation replaces
the minimisation property by the requirement for a stationary solution; see section 7.2
of [3] for an introduction to this principle. In order to formulate it, Moiseyev first in-
troduces what he calls the “c-product” in chapter 6. Instead of defining the c-product
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in one way or the otherﬂ we aimed at constructing it axiomatically as far as possi-
ble. In general, we have a non-Hermitian (for instance, complex-scaled) linear operator
H : H(R") — L*(R"), which is assumed to be bounded. The usual Hamiltonian
satisfies this when considered as an operator defined on H?(R") and so does the complex-
scaled variant of it, as long as the potential has the necessary regularity properties (in
particular, SpV € H 2(R")).

Definition 4. The form (-|-) : L*(R") x L*(R") — C defines an appropriate c-product
for H, if

1. (+|-) is bilinear and symmetric[l

2. the Cauchy-Schwarz inequality holds:

(o) < (I8l [l
for all ¢,1 € L*(R"), and

3. <¢|f[¢) = <I:I¢>]1D) for all ¢,¢p € H*(R™). In other words, H is “Hermitian”
with respect to the c-product. To emphasise this symmetry, that expression will be
denoted as <gb|]:[ |77ZJ> in the following.

It is not required (and in general not true) that the c-product will be positive-definite or
non-degenerate.

If H is a complex-scaled Hamiltonian of the usual form , possibly even with an
a-priori complex potential, then we can define

(9ly) = - ¢(x)¢(x) dr. (36)

See page 181 of [3] for why this then fulfils [Definition 4] and in particular satisfies the
“seneralised Hermiticity” of H (as in the last item in [Definition 4| above). Basically, for
the kinetic-energy term we can apply integration by parts twice, and the potential can
be put to the other operand simply because uses just a commutative product. Since
there is no complex conjugation involved, as would be the case for the ordinary L2-inner
product, this also works if the potential is complex (after complex scaling, for instance).

By [Definition 4] it is clear that (¢|-) is a bounded, linear functional on L*(R") for
arbitrary, fixed ¢ € L*(R™). Thus by the Riesz representation theorem (Theorem 2.3 on
page 184 of [I]) we can represent it via the ordinary L2-inner product. For the c-product
, the representative would be ¢*. However, the mapping between a dual element and
its representative is no longer linear (or even the identity as in the case of Hilbert spaces),
but is now anti-linear. This is of no practical importance, however.

15Tn fact, there are several different definitions in the literature. See, for instance, equations (6.11)
and (6.14) in [3], the explanation on page 182 therein, and (2.1) in [I8].

16Note that contrary to the ordinary scalar product, we do not want anti-linearity or complex conju-
gates when switching the order!
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Theorem 8. Let (-|) be a c-product for H according to |Definition 4. Assume that i,

and 1y are both eigenfunctions corresponding to non-degenerate energies:
Hipy = By, Hiy = Exthy, Er # B

Then (1|1e) = 0. In other words, the well-known orthogonality property for eigenfunc-
tions carries over to the non-Hermaitian case with the c-product.

Proof. The proof goes just as in the Hermitian case, taking advantage of Definition 4]
See also page 181 of [3]. We have:

(¢1|ﬁ|¢2> = (%’ﬁ%) = By (Y1¢2), <¢1|H|¢2> = (ﬁ%\%) = By (1)) .
Subtracting both relations yields

0= (E1 — Ez) (Y1eha),
thus showing c-orthogonality, since £} — Ey # 0 by assumption. [

Theorem 9. Let Hiyp = Eip, with 1 € H(R™) and ([¢)) # 0. Let 1) € H*(R™) be an
arbitrary perturbation with ||0v]] ;. < 1.m We define the Rayleigh quotient as functional
D c H*(R") — C:

o) - (l1119) -
o (9le) 7
which is well-defined for the set D of c-normalisable functions.ﬁ Then for
¢ - ¢ + €5¢7

we have that

R(¢) = E+ O ()

as € — 0, uniformly in 6v. In particular, this implies that all directional derivatives of
R vanish in ¢ € H*(R™), as well as its Fréchet derivative. In other words, ¢ is a critical
point of R, where the critical value is just the eract ez’genvalue.ﬁ

Proof. First of all, we can write 610 = a1) + i+, where we set

Gol) .
=77 5 =0 — .
=gy VT

Then clearly
(60 w) = (6010) — a (V|p) = (§¥]w) — (5v]v) =0,

"We do not need that 1) is c-normalisable, since an upper bound is enough and the c-product can
be bounded by the ordinary L?-norm. Furthermore, of course, 6| < ||§3] ;7. < 1 by the embedding of
L?(R") into H*(R").

18Since ¢ +— (¢|¢) is continuous in the L2-topology, D contains at least an L2- (and thus also H*-)
neighbourhood of ¥ € D. This is enough for our interests.

9See also (7.17) in [3].

36



so that we found a c-orthogonal decomposition. Furthermore, if we define C' = m #0,
we have the bound

ol < (CTI6Y el < ICTII < C] [l

HS
and consequently also

6w

2 /
e =C".

e < 10Y]

ws <14 [C[9]

e Tl [[9]

Take note that the constant C” is uniform in §i) and only depends on H and Y. Clearly,
also the identity ¢ = (1 + ea)y + edp* holds.

Now we calculate the Rayleigh quotient using this decomposition and the fact that
d1p* is c-orthogonal to 1:

(1+€a)? (VIH|Y) +26(1+ ) (84| Hw) + & (| Hlw)
(1 + €a)? (¥[Y)) + 0+ € (39 +]69)
B(1+ ea)? (]y) + & (160 )
(14 €ea)? (Ply) + € (3y-|oy-)

If € is small enough, 1+ ear will be non-zero (and in fact, since « is bounded, converge to
1 uniformly in 1) as € — 0). Let us define

R(¢)

1
Oe = ’
(14 €a)? (¥[)
which has the limit C, — C for ¢ — 0. Then we get

E—E(1+Cé (oy*|oyT)) Q Q — (6y*[oy+
R(g)—E = 1+c:2 (fw(uaw) ) T e eteen) — OF (D )
where
Q1 = | (sutiiewt)| < ow|| [ aov| < o |[a]|lov*] . < )| &)

is bounded and
lim D = lim (1 + Cé (5¢l|5wL)) =1,
—0

e—0 €

both uniformly in d1. Consequently we know that the limit

RO —E Q- (505t
e T

exists and is finite, showing the claim. O]

Note that is still valid if d7 is not normalised, while, of course, it always
needs to be in H*(R™). Then, however, the result is not uniform in ¢ and instead the
constant in front of the O (¢?) term depends on [|67|

Hs-
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Theorem 10. Let («) € H*(R"™) be a parameter-dependent wave function, where we
assume for simplicity o € Cﬂ Let ¢ (-) be differentiable and assume that the eigenvalue
equation Hi(ag) = Ev(ag) is satisfied for a particular g as well as ((ag)|y(ag)) # 0.
We consider the Rayleigh quotient of now as a function of a. Then

aR(OéQ)
Oa

= 0. (38)

Proof. We begin by defining dy = 2429 1t follows that

Y(ag + €) = Y(ag) + €0 +1(e),

where r(¢) € H*(R") and r(€) = o(¢) in the H?-norm; this is evident, since we require
differentiability of ¢(-) in H*(R"). From we know already that the stationarity
property R(v(ap)+€d)) = E+O (€) holds (as remarked after above, it is not

important to normalise 0t for the argument we have in mind here). For ease of notation,

define
() + e () + ed)

Q= a0 + O vla0 + )

Note that for ¢ — 0, we have

(V) + edp|ib(an) + €0p) — (Yo + €)|Y (a0 + €))
(¥ (a0 + €)1 (o +€))

with C. bounded for ¢ — 0. Then

Q1=

' < @l C.

| R(ao + €) — R(¢ (o) + €d)| < Hir(@l CE < [lr(ell 7,

€

(Q = 1) () + el H[ () + edv)
(¥(a0) + 00 [(a0) + ev)

where C!, C” are also bounded for ¢ — 0. Hence
R(apg+€) = R(Y(a) + €dp) +0(e) = E+o(e)
for ¢ — 0, showing the claim. O

gives the statement that we must look for a stationary energy expectation
value to find the best (non-linear) variational parameters, and its proof shows rigorouslylﬂ
the validity of (7.28) in [3]. Finally, we want to deduce the linear variational principle
from [Theorem 10} For this, assume that we expand the exact eigenfunction ¢ with
Hi = Ei into a basis of H5(R"), say

0 N
Y= ape XY arxke
k=1 k=1

200f course, it is trivial to extend this to the situation of a multi-dimensional parameter space.

21Note, however, that this is, in fact, only true if the ansatz is chosen in such a way that it is possible
to exactly achieve the correct eigenfunction with a suitable choice of parameters. This is not true in
practice, but the secular equations still hold approximately.

38



Consider again the Rayleigh quotient |(37)f

E=R{) = ng lljk:a(lf;’jifo = i aay (Xk'ﬁ’Xl> = (i ARy (Xk|Xl)) R(¢)

k=1 k=1

R(

Now take the derivative with respect to a, on both sides, and note that g w) = 0 because

of [Theorem 10] This yields
> (Xk’H|Xz> a = EZ (xxlxi) @ (39)

=1

Assuming that still holds if we restrict the sums to be finite, we can proceed to the
corresponding statement for a finite basis: Define the two matrices

Hy = (Xk|I:]|Xl> , Su= (lxa) (40)
then we find that for the vector a of coefficients we have to require
Ha = ESa. (41)

Consequently, if we have a finite basis, we can approximate the infinite-dimensional eigen-
value problem of H by calculating the matrices H,S and then solving the generalised
eigenvalue problem for the expansion coefficients a; in the used basis. For a treat-
ment of the variational principle in the conventional Hermitian setting, see, for instance,
section 5.4 of [4]. Note that the assumption made, namely that holds even When
truncated to a finite expansion, is usually not really justified. In practice, however,
still holds approximately in this case, and eigenvalues of - (41)|approximate the elgenvalues
of H well if the basis is chosen large enough.

4.2 Stochastic Basis Functions

Since the goal is to use to approximate the eigenvalues of a non-Hermitian (scaled)
Hamiltonian, we have to find some basis and calculate the matrices H and S first. In
this section we will address these points for a specific choice of basis functions. As the
calculations here involve a lot of Gaussian integrals, not everything is detailed below.
The necessary calculations were instead done with Maxima [17].

4.2.1 Gaussian Basis Functions

Definition 5. Let a > 0 and p € R". We define the Gaussian basis function correspond-
ing to these parameters as

Xaop() = e=elenl (42)

where x € R" can be (at the moment) multi-dimensional.

The Gaussian basis functions|(42) have several nice properties: They are given by an-
alytic expressions and are smooth (in fact, whole functions), dense in H*(R"), localised
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Exact
Fitted
Basis

Figure 10: Least-squares fit (black) of a given function (red) in a basis of five Gaus-
sians according to [Definition 5 Since the target function is odd, the basis functions
have been mirrored accordingly to make them odd, too. The basis functions times their
corresponding coefficients are shown in blue (i. e., the sum of the blue curves gives the
black approximation curve). Note that this is not strictly the best possible fit for any
five Gaussian basis functions, but one that illustrates the power of the approximation by
means of Gaussians nicely.

(not exactly with compact support but “almost” so) and they can resolve fine details
where necessary by choosing a large . This is nicely illustrated in [Figure 10} Through
a combination of wide and narrow Gaussians, the given function (in red) can be approx-
imated reasonably well. In the centre, where a lot of details are present, more basis
functions have their support, while in the outer regions not so many are necessary. See
also section II/A of [I9]. One can even add a more general correlation matrix to |(42)}
but this is only a technical detail and is not considered here.

Now assume the one-dimensional case for simplicity. In order to express the integrals
that represent the elements of the matrices S and H of in closed form, let us first
introduce a short-hand notation for a common sub-expression:

E(a, B, p,v) = exp (—aofﬁ(u - V)2>

Then the overlaps of basis functions (the entries of S in are:

T
a+f

(XOZ,#|XB,V) = / 6—04(17—#)2—6(-’2—11)2 d,f — . E(a7/87 W, V) (43)
R
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The kinetic-energy part of the Hamiltonian matrix element is:

—ola—1)2 2 )2
(osl=38)sa) = = fe 0 e e d
= (a+;)? B<a+ﬁ_2aﬁ( ))‘E(Oé>5a/l7’/)

All what remains is to calculate the (scaled) potential part of the Hamiltonian matrix
element, which can be done—depending on the potential—also symbolically or simply
by some numerical quadrature scheme. Then one can use together with the above
results to build up the matrix H and solve numerically.

4.2.2 Orthonormalisation of the Basis

Let us assume for the moment that we have an arbitrary basis of functions; they need
not be the Gaussians Let us call it (xx), where k = 1,2,.... They are, of course,
linearly independent (because we want them to be a basis), but usually neither orthogonal
nor normalised (although it would not be hard to normalise them). For instance, they
may be Gaussians according to with randomly chosen parameters oy and ju.
However, in some circumstances it is preferable to express the variational method in terms
of an orthonormal basis rather than an arbitrary one. To make (x;) orthonormal, the
well-known Gram-Schmidt procedurﬂ can be applied. If we denote the correspondingly
orthonormalised basis by (), then this procedure means nothing else thanﬁ

Xr = Ck (Xk - z_: (Xilxx) >~<1> ; (45)

where C} is the proper normalisation constant (namely just the reciprocal of the norm
of the parenthesised expression). Since the (xj) are linearly independent, it is clear that
only produces non-zero functions (xx). Hence it is guaranteed that we can normalise
them. Furthermore, it is easy to see that the span of the first N basis functions is not
affected by the Gram-Schmidt procedure .

Lemma 2. For (xx) according to one has (Xk|X1) = O for all k,1=1,2,....

Proof. For k = [ this is clear per definition of C} as the proper normalisation constant.
So assume | < k. We use a proof by induction in k, thus assume further that (x;|x;) = oy
for all 7 < k. But then from and by linearity of the inner product in the second
argument:

k—1

(xalxr) = Ck ( Kb = D (Kilxw) Xll)Zi>) = Cr ((Xulxw) — (ulxx)) =0

=1

O

22A description can be found, for instance, in subsection 4.8.2 of [20] and in many other textbooks.

23In this subsection and in general for orthonormalisation, the ordinary inner product and not the
c-product is used. This has to be done because we still want to measure differences (or approximation
errors) in the ordinary L?-norm induced by it and want to have Parseval’s identity (see
below) available after orthonormalisation. This will be applied in [Subsection 4.3.3] However, since the
basis functions are usually real, there is no difference to the c-product for them anyway.
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Thus it is shown that indeed does what we expect it to do: Transforming an
arbitrary basis into an orthonormal one without changing the basic properties of it, i. e.,
being a basis that spans the same subspace.

Next we want to express this procedure in terms of matrices. Let S be as before the
(symmetric) matrix of overlaps in the basis, Sk = (xx|x;). This is, of course, not the
identity as it would be if we already had an orthonormal basis, but it is a symmetric,
positive-definite matrix. By S* we will denote the k x k submatrix of only the first k
basis functions. We want to construct M* (again denoting the matrix for the first & basis
functions) such that

X1 X1
L=t (46)
Xk Xk

holds according to |(45)} Clearly this matrix will be lower triangular because of the

“forward propagation” nature of the Gram-Schmidt process. If we have | < k, then
assuming we already have at least [ orthonormalised basis functions, we can write

l
(Xilxw) = <Z thzlxk> = > M (xilx) -
=1

Note that M is a real matrix because we use real basis functions and thus linearity also
holds for the first argument in the inner product. Hence the products on the right-hand
side of |(45)[ can be expressed as

(X1lxr)
Pk = : = M" - (Sik )f 1
(Xk—1]Xk)

Here, (Si)r_, denotes the vector formed of the first k elements in the k-th column of the
matrix S. T hlS then gives the final reformulation of - as

X1
: ME O X1
X1 = Crp1(—piyy 1) )2 = Chp1(—ppyy 1) ( 0 1 )° : ,
F Xk+1
Xk+1

which also gives the last row to add to M* in order to produce M**! from it. For the
norm, observe that we can rewrite as

N

71 3 3 1 3
(Xilxw) Xi + FXI@ = Xk-
k

i=1

If we now “square” both sides with the inner product, we can apply Pythagoras’ theorem
on the left-hand side (since the vectors there are orthonormal), which yields

k—1

N 2 1 9 1
Z (Xilxe)” + oz = [Iprlly + cz = (Xklxw) -

=1
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From this it is trivial to calculate Cj. So now we have a nice theoretical description of
the Gram-Schmidt procedure for abstract basis functions expressed in terms of matrix
and vector operations. All we have to know about the basis functions is the matrix S.

Lemma 3. Consider a finite basis of the first m elements, and let 1 be in their span:

m

Y= ZaiXi = Zdifa
i=1 i=1

Then the relation between the coefficients in the original and orthonormalised bases is

giuven as
a=M'a, a=M "a, (47)

where M = M™ is the matriz from|(46),
Also, if O is an arbitrary operator on the finite-dimensional subspace spanned by this
part of the basis, we can define the matrix elementﬁ similarly to|(40):

On = <Xk|O|Xl> , Ou= ()Zk|0|92l>
Then these basis representations ofO are related by
O=MOM", O=M"1OM™". (48)

Proof. 1f we denote the “vectors” of the first m basis functions in either basis by x and
X, respectively, note that per we get x = Mx. Thus

p=a'y=a'My=a'x,
and hence we can conclude (also take uniqueness of the basis representation into account):
@' M=a" & a=M'a & a=M"a

Note that M and M T are invertible since they are triangular matrices with non-zero
entries on the diagonal.
For the matrix elements, we have similarly

On = <>Zk|é|)2l> = (Z MkiXi|O|ZMlej> = Z M My (Xi|O|Xj>
i=1 =1

ij=1
ij=1 j=1
Thus also the second claim follows. O

We can now conclude two important results about how to find the orthonormal basis
in practice and how it can be employed; see also [Subsection 4.3.3| below for another
possible use.

24Here we indeed use the c-product again because the operators we need (in particular H and S
from [(40))) will be made up from matrix elements in the c-product. This is a completely different and
independent issue to the inner product used for orthonormalisation.

43



Theorem 11. Let S = LLT be the Cholesky factom’satz’o of S, then M = L™'.
_ E is a generalised eigenvalue to if and only if E is an ordinary eigenvalue of
H=MHMT. The eigenvector a of coefficients in the orthonormalised basis corresponds

to the coefficients a in via @ = M~"a as per[(47)

Proof. We first apply |(48) - to the identity. Note that the corresponding matrix is just
S per Because the Y are per definition orthonormal, the transformed matrix S
built up from c-inner products of the orthonormalised basis is instead the identity matrix.
Thus

S=M1SMT=M'MT=LL" (49)

with L = M~1. Because M is lower-triangular, the same also holds for L as can be seen
easily from the procedure of Gaussian elimination. The form is, however, nothing
else than the (unique) Cholesky decomposition of S.

For the second part, let £ € C and a € R™ be given, and set @ = M~ "a. Then:

Hi=Fa & MHM'-M "a=EM "a & Ha=EM 'M "a=ESa

4.3 Selection Principles for the Basis

We are still trying to use derived above in to calculate eigenvalues. In
we already described which class of basis functions we want to use for that. In
this section we will discuss how one can choose the parameters oy, and puy, inin order to
find a “good” basis. Of course, the most straight-forward procedure is to simply generate
them altogether randomly. In our implementation, the p’s are uniformly distributed
on some finite interval, which is chosen a-priori according to the expected support of
the scaled eigenfunction one is trying to find. The «’s are selected uniformly from a
logarithmic interval of plausible widths. This seems better than a uniform distribution,
because the interval of seemingly possible a’s is something like 1072 to 10 (for the test
problem we considered). Since a must be positive, a logarithmic range makes more sense
than a linear one.

In order to do better, the general idea in the stochastic variational method (see also
section II/B of [19]) is to build up the basis step by step, and for each element that
should be added to the basis, multiple candidate functions are generated. Then each
of those possibilities is evaluated according to some selection criterion, and the new
basis function that seems to be best is chosen as the real next one and added to the
basis. In conventional Hermitian quantum mechanics, the obvious selection criterion is
minimisation of the eigenvalues according to the Rayleigh-Ritz principle. In other words,
at each step that candidate function is chosen, which generates the smallest eigenvalue
(or for which a suitable “basket” of the lowest few eigenvalues is minimal). With complex
eigenvalues and non-Hermitian operators, this is unfortunately no longer possible. Below
we discuss some possible alternative strategies. In those will be compared to
each other for a practical calculation.

25 A general discussion of the Cholesky factorisation and its properties can be found in section 4.5 of
[20). Note that the explicit procedure for calculating M given above is very similar to the well-known
Cholesky algorithm, which can also be found in Figure 4.5 of [20].
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4.3.1 Improving Poorly Conditioned Matrices

When one starts to do numerics with randomly chosen basis functions of the form |(42)]
one quickly finds out that by chance some of the chosen functions will have quite a large
overlap. In other words, the chosen basis will become “less and less linearly independent”.
Of course, in mathematical terms there is only linear independence or dependence, with
no intermediates. However, in practice the matrix S from |(40)| may become worse and
worse conditioned. In fact, its condition number@ grows exponentially with the basis
size. For the orthonormalisation procedure described in [Subsection 4.2.2| this is a prob-
lem, as with already about 50 basis functions the Cholesky factorisation is no longer
possible numerically due to inaccuracies. In order to combat this problem, one can add
an additional selection step for new basis functions as described above, and pick from
a number of candidate functions that one, which results in the lowest condition number
of the new S. While this step does, of course, nothing to help us find a basis that is
well-suited for solving the eigenvalue problem, it helps with, and even allows us again, to
use orthonormalisation. As we will see below in [Figure 13a], this selection criterion alone
does about as well as a purely random selection. However, we can add an additional
selection on top of the condition-number-based criterion, which will then allow improve-
ments. shows how the condition number grows with the basis size, where
the shown curves correspond to different numbers of candidates generated at each step
(“trials”). The black curve with only a single candidate corresponds to no selection, and
we can see that only five candidates (green curve) reduce the condition number already
to about the square root of the original one. This is the number of candidates we used
in our calculations every time the condition-number selection was applied.
shows the parameters a and p of an example basis with and without selection. One
can see that the condition number gets better when larger o are preferred. This is true
because more localised Gaussians enter the basis in this case, which have consequently
less overlap with the other functions of the basis.

4.3.2 Stationarity of the Energy Expectation Value

We know already from that the energy expectation value given by the
Rayleigh quotient is stationary for perturbations of the exact eigenfunction. We
can try to exploit this property in order to find a good basis. For this, let us first actu-
ally calculate the derivatives of the Rayleigh quotient. Let our basis be given as (Xay. )
according to , where £k = 1,..., N. Let H,S be the matrices of and recall in
particular [Subsection 4.2.1] for the form of the matrix elements of H and S. If we express
an approximate wave function ¢ in this basis by

N
Qb:E Qi X vy i s
=1

the Rayleigh quotient is
(61119) _ o r1(0 o

(6l¢)  aTS(a,p)a

26Here and in the following, we always mean the condition number in the usual Euclidean 2-norm.
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section 4.3.
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Note that, since the c-product is bilinear, we really have a' here and no Hermitian
conjugates! As indicated, the dependence on the non-linear parameters oy, and gy of the
basis comes in through the matrix elements of H and S. Thus the derivatives of R(¢)
with respect to these parameters are given simply by the quotient rule as

T OH T 0S
OR(¢p) @ 550 a4 5l

oa,  a'Sa (4) a'Sa

Of course, |(50)| has the same form for the derivatives with respect to the u’s. Thus for

(50)| to be applicable, we have to calculate the derivatives of the matrix elements. For
% and 88—5, note that [(43)[ can be symbolically differentiated arbitrarily often; while the

Lk
expressions are lengthy, it is nevertheless easy to calculate them using a computer algebra
system like Maxima [I7]. The same also holds for the derivatives of the kinetic-energy

parts [(44)[in H. For the potential parts, note that

(50)

Vi = (Xak,uk‘lem,m) :/R Xagopar (T) Xy (2)V (2) da :/ e—aklx—uk\2—azIr—uzIQV(m) dz.
From this form, it is easy to see that the only dependence on the parameters oy and py is
in the exponential. Thus it can, of course, again be easily differentiated arbitrarily often
and symbolically, yielding gTVk and % if we have a general-purpose quadrature routine
that can numerically integrate arbitrary functions against the potential. In a practical
implementation, we need such a routine anyway in order to calculate the potential matrix
elements, thus also these derivatives can easily be calculated. In the end, we have every-
thing to use in order to evaluate derivatives of R(¢) with respect to the non-linear
parameters.

With this in hand, we can now formulate a basis selection criterion based on
rem 10; Define the gradient of the Rayleigh quotient with respect to all parameters,
From all candidate basis functions, choose the one that minimises some norm of VR.
In our implementation it was the [|-|| . norm (i. e., the mazimal single partial derivative
that appears as a component of the gradient), but, of course, any other norm would also
be suited; especially because all vector norms are equivalent anyway in the underlying
finite-dimensional space C?".

One can also make use of the stationarity provided by in a stochastic
way: Assuming for a moment that N basis functions are enough to represent the exact
eigenfunction suitably well (such that also in this basis a stationary point is achieved
at least approximately), we can consider a probability space on the set of all possible
non-linear parameters (which is a subset of R%Y for the case of basis functions according
to . Solving for a given set of parameters then induces a functional dependence
between those parameters and the resulting approximate eigenvalues. In stochastic terms,
the eigenvalues are random variables on that probability space. By [Theorem 10] we know
that for those parameters that lead to a good approximation of the real eigenfunction, the
derivatives of this mapping vanish. This implies that the probability density for the ap-
proximate eigenvalues has a maximum at the exact eigenvalue. Thus, one could “simply”
generate a lot of random bases and then choose some mean of all occurring approximate
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eigenvalues as approximation to the exact eigenvalue. According to the central limit
theorem one can expect that these approximations converge to the real one with a rate
of LK, where K is the number of runs}*’| This is not really great convergence, and nu-
merical results also indicate that we have indeed this or even worse a rate. Furthermore,
the whole discussion above is based on the crucial assumption that the basis length N
is already large enough (so that we can really approximate the exact eigenfunction well
with only N basis functions). Thus, with this approach, in addition to lots of runs we
still also need a large basis to begin with. All in all, this approach is not very practical.
It is far more desirable to have a selection criterion which allows us to build a good basis
step by step, rather than always replacing the whole basis for each run. This was our
original idea behind the stochastic variational method, after all.

Alternatively one can, of course, vary just the last basis function and consider the
resulting approximate eigenvalues for all candidates. In this case, however, the problem
is that most probably this procedure does not give enough flexibility to actually represent
the exact eigenfunction good enough with the existing and fized N —1 basis functions plus
the new one, such that cannot be applied. Both cases are demonstrated in
Figure 12; For each one, the “cloud” of approximate eigenvalues plus the exact positions
are shown. The figures in the bottom of each page show a view zoomed around the third
resonance. One can see nicely that in the exact position is really at the centre
of the cloud, while in this is not the case.

So far we did not mention an additional difficulty with the rough idea of “trying to
minimise the gradient of the energy expectation value”: Namely that in order to calculate
V R(¢), we actually need one approximate wave function ¢ at which the Rayleigh quotient
and also its gradient can be evaluated. However, when solving , one actually obtains
N eigenfunctions, since it is the eigenvalue problem of an N x N matrix. Most of them
are only spurious artefacts of the finite-dimensional discretisation and do not have any
physical significance, but a-priori we do not know which of them really correspond to
eigenvalues of the original problem. Nevertheless, in order to calculate VR with ,
we need a single coefficient vector a. Hence, we also have to decide upon which of the
eigenvectors we use to apply the gradient criterion! Looking at [Figure 12a], one can,
however, see that the eigenvalues of the discretised problem have a rather nice structure:
Spurious eigenvalues, that do not correspond to real resonances, may appear anywhere
near the indicated scaling-angle line. Above it, the eigenvalues cluster nicely around
the discrete resonance poles. Thus we can immediately mention at least two (heuristic)
decision strategies for finding the “real” eigenvalues:

1. If we know approximately where a resonance is expected, we can simply choose the
approximate eigenvalue that is closest to that position and use its corresponding
eigenvector as a in . Since the resonances are clearly distinguished from each
other, it is already enough to know the value up to very few digits. For our calcu-
lations where this approach was applied, we added Gaussian noise with a standard
deviation of 0.1 (corresponding very roughly to a 10% perturbation) to the exact
resonance position. This disturbed value was then used as the “known approximate

27See, for instance, chapter 7 of [2I] and in particular Theorem 1.1 there. To justify this claim
rigorously from the theorem, one needs that the random-basis eigenvalues form an unbiased estimator
for the exact resonance energy. It is not clear whether this is really the case.
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(a) Full view.

Im

(b) Zoomed around n = 3 resonance.

Figure 12: Approximate eigenvalues (black dots) and exact positions of resonances (green
crosses) for with complex scaling (angle 20 indicated by red line). N = 40
random basis functions are used, and 500 runs are combined. This figure shows how the
eigenvalues are distributed when the whole basis is changed.
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(d) Zoomed around n = 3 resonance.

Figure 12: Continuation of [Figure 12, Here, only the last basis function is changed.
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position” of the calculation. This was accurate enough. In practice, an approxi-
mate position can, for instance, be obtained via a calculation with a single, random
basis or with finite differences. Such a combination of methods can be useful in
order to get a rough overview over the resonance structure first, and to calculate
the positions of particular eigenvalues more precisely later on.

2. It is visible (and also clear from the explanation above based on that
eigenvalues of different runs are by far more stable around the real resonances than
in case of spuriousness. Thus one can, for instance, look at eigenvalues in the
new basis of N basis functions that are close to eigenvalues of the previous step
with only N — 1 basis functions, or devise heuristics that take into account the
distribution of eigenvalues for all the current candidate functions generated. Below
such a heuristic (based only on the results with N and N —1 basis functions, not the
whole set of candidates) is also used and performs quite well. Note, however, that
this strategy is not so well suited if a particular resonance is of interest, because
the eigenvalue determined by the heuristic approach may correspond to different
real resonance positions for different steps. Another approach utilising the same
basic idea of “stationarity” of the real eigenvalues in contrast to artefact ones is to
solve the discrete problem with different scaling angles # in the same basis. Also
in this case, the eigenvalues corresponding to real resonances are more stable than
spurious ones. See, for instance, Figure 7 in [18].

See also|Subsection 4.4.3|and [Figure 16/ below for a comparison of these decision strategies
and their influences on the overall method performance in the case of a numerical example.

4.3.3 Weight-Based Update Strategies

Before we describe the “weight-based update strategies” further, let us recall Parseval’s
identity (which is basically a generalised version of the Pythagorean theorem):

Theorem 12. Let U be an inner-product space with the norm ||-|| generated by the inner
product. If (xx) C U is an orthonormal seﬂ and (ax) C C are arbitrary coefficients, then

2
~ o~ ~ 12
Zaka :Z|ak| :
k k

Proof. This follows by expanding the squared norm and using orthonormality. O]

This is the starting point for the following consideration: Assume that we have a basis
of N + 1 orthonormalised functions to approximate a resonance eigenfunction, say

N+1
YR Py = Ak

k=1

If we now want to reduce the basis to just N functions by removing one element, because
we are looking for a small basis still giving a good approximation ¥y, the best choice is

28Usually, one formulates this result with a basis, but that is not necessary.
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to remove X,, where |a,,| < || for all L =1,..., N + 1. This choice minimises the error
introduced by reducing the basis, because

lonsr = onll* = |am|”

is minimal among all possible choices. Of course, if we have in mind that the coefficients
ay are chosen by solving , then the situation is not as simple as above, where we as-
sumed them to not be changing at all. However, it is still suggested to be a good strategy
to remove the particular basis function which has the minimal coefficient or weight among
them all. Note, however, that for this argument to be valid, it is really crucial to have
an orthonormalised basis, because otherwise is simply wrong! Thus, when
deciding about the relative weights of the basis functions for not yet orthonormalised
Gaussians, one has to first employ to find the weights in the corresponding orthonor-
mal basis and then find the minimal a; rather than the minimal a; directly. According
to this reasoning, we propose the following strategy for generating a good basis:

1. Starting with /V already chosen basis functions, add another one using a condition-
number-based selection as described above in [Subsection 4.3.1| to get a basis with
N + 1 elements.

2. From all basis functions (including the “old” N ones and not only the new), find
the one with minimum weight a; as described above. Replace it by a new basis
function, again selecting the new one based on the resulting condition number of
S. Repeat this procedure several times in order to adapt the basis to the problem
at hand without increasing its size.

3. Continue with the first step to gradually grow the basis.

There are two important remarks we have to make about this procedure: First, as opposed
to just selecting the best new candidate, it also allows to change old basis functions—this
gives more flexibility, as one is not “locked in forever” with basis functions once they are
selected. This is, however, still a gradual build-up rather than selecting completely new
bases every step as discussed above on [page 48] Second, we found it to be practically
important to employ condition-number selection as a sub-process, because otherwise as
mentioned in[Subsection 4.3.1]it becomes impossible to numerically perform the Cholesky
factorisation of S necessary to find the “real” weight of a basis function. Even with it,
though, at some point the orthonormalisation still becomes instable as can be seen from

the green curve in [Figure 13b| (see also the explanations in [Subsection 4.4.1]).

4.4 Numerical Results

In this section, we finally want to compare the methods described above to each other
based on how fast (or slow) they approach the correct resonance energies with a growing
number of basis functions. As our toy problem, [Example 5| is used again, with the
parameters chosen as J = 0.8, A = 0.1, and 6 = 0.157m. Convergence is measured
with respect to the n = 3 resonance energy, where F3 ~ 1.7846 — 0.1738:. We use the

Es — Ey

Fs5., E5 € C are the exact and approximate resonance eigenvalues, respectively. The value

absolute error in the eigenvalue as our measure of convergence, i. e., , where
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we calculated and used as comparison agrees with the one given in [9], at least up to
the four digits of accuracy given there@ It was calculated by the gradient method (see
the list below), in a single run, with N = 100 basis functions. This should be large
enough a basis for this purpose, since we will see in (blue curve) that the
maximum precision possible due to numerical issues is already reached around N ~ 80.
Since the variational methods to be examined here are stochastic by design, the concrete
results depend on the actual run. In order to compensate for that, the curves shown and
discussed below will be averages over multiple runs (namely, 1,000 to be precise), where
the average is taken of the logarithm of the error (since the plots are also logarithmic on
the y-axis). We always use Gaussian basis functions according to [Subsection 4.2.1 and
will compare these methods below:

Random For this method, no actual basis selection is performed. Instead, the non-
linear parameters of the basis functions are chosen purely randomly, and only the
linear parameters (i. e., expansion coefficients in this basis) are varied. This helps
to benchmark the performance of other methods.

Condition Number The selection of candidate basis functions is only based on the
condition number of S as described in [Subsection 4.3.11

Error Minimisation We choose at each step that candidate basis function, which re-
sults in an approximate eigenvalue that is closest to the exact resonance position.
This is of course “cheating” because one needs to know the result already (and
thus this method is not applicable for a practical calculation), but it is nevertheless
interesting to consider this method here.

Gradient The selection criterion based on minimisation of the gradient norm, as de-

scribed in [Subsection 4.3.2

Weight-Based with ONB The weight-based update strategy (see |[Subsection 4.3.3)),
together with orthonormalisation of the basis. Furthermore, additional selection
steps are used to reduce the condition number and improve the numerical stability.
See also the algorithm outline given on [page 52

Besides the actual comparisons of these methods in [Subsection 4.4.1] we will also
demonstrate and discuss some more subtle issues related to some details of the methods
in [Subsection 4.4.2] and [Subsection 4.4.3. In [Subsection 4.4.4] we will finally analyse
how the stochastic variational method compares to a finite-difference method, which is
completely different in spirit. The numerical calculations were performed with GNU
Octave 3.6.3 [22] on a GNU/Linux system of the amd64 architecture. For the gradient
calculations, we used both symbolic expressions derived with Maxima [I7] as well as
automatic differentiation with ADOL-C [23], both giving consistent results. See also [24]
for more details on this.

29Note that (as was already mentioned on [page 17)) the potential in [9] has an additional offset of .J,
which has to be taken into account when comparing our results with the values there.
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4.4.1 Performance of the Stochastic Variational Methods

Let us start directly with the main topic, namely the comparison of the performance
of different stochastic variational methods to each other. How the error decreases for
increasing basis size is shown in [Figure 13} Some rather basic methods are compared to
each other on top in [Figure 13a] and below in the better methods we suggest
for a practical calculation are shown. The black curve in both plots shows the random
basis-selection method, so that other methods can be judged by it. As can be seen in
from the green curve, the condition-number-based selection does not perform
any better. The red curve, showing minimisation of the error, is also interesting: At
the beginning, it behaves very well as might be expected “by design”, but interestingly
enough, later on this method is not better than random selection at all, even though it
may be intuitive to assume it should be the best selection possible. This is probably due
to the fact that a basis function which is “best” at some early step may well be worse
later on. Without the possibility to replace functions already selected (see ,
they may deteriorate the overall performance in subsequent steps. Especially, since basis
functions are chosen only to satisfy a small error and not by some more general criterion
(for instance, a small gradient as suggested by, this may lead to “overfitting”
in later iterations.

Methods that actually show an improvement over random selection are shown in
[Figure 13b] In particular, the best method for the basis lengths tested seems to be the
weight-based update, whose convergence is shown by the green curve in [Figure 13b It
can be seen, however, that above a basis size of N ~ 70 the maximal accuracy is no
longer achieved by this method. This might be due to the fact that in this region even
with the condition-number selection steps the condition number of S grows so much, that
the orthonormalisation becomes instable, wherefore the weight-based update also does
not work well any more. The maximal precision of about 107 achieved with a basis
size of N = 70 is probably already more than enough for most applications, though.
The blue curve shows how the gradient method performs. Compare here also [Figure 14]
which shows how the gradient norm itself decreases accordingly and in good correlation
to the decrease in the absolute error of the eigenvalue. After a certain initial basis size is
reached at around N = 30, it shows the steepest descent of all methods tried. This might
be due to the fact that it has the best theoretical justification (based on [Theorem 10)).
The initially needed basis size may be explained by the assumption (see that
we can actually express the exact wave function already with our basis. This assumption
is necessary for but only fulfilled accurately enough if the basis size is not
too small. It can be seen that also this method “flattens out” for a large basis, but this
is very probably due to the fact that at this point the numerical eigenvalue calculation
itself is already the limiting factor in precision. Furthermore, also the “exact” comparison
value (see the explanation at the beginning of this section on is, of course, not
without inaccuracies, which is another limit from below for the shown error.

4.4.2 Different Weight-Based Methods

In particular for weight-based methods there are multiple things to consider in order to
get them “right” as mentioned in [Subsection 4.3.3] The influence of those is shown in
Figure 15; There, the red curve shows the most naive implementation—not employing
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Figure 13: Convergence of the absolute error for different selection criteria in the stochas-
tic variational method.
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Figure 14: Convergence of the gradient method in absolute error (blue) in comparison to
the decrease of the gradient norm (red).

orthonormalisation, but instead using the coefficients in the original, non-orthogonal
basis (although the individual basis functions are, of course, normalised). It works at
the beginning, when there is not yet much overlap, but it quickly fails for larger basis
sizes. The blue curve shows what happens if still no real orthonormalisation is applied,
but the condition-number criterion is used. It works surprisingly well up to a certain
point, but then also fails. The initial success is due to the fact that by selecting basis
functions in order to minimise the condition number of S, functions with not much
overlap are preferred. This leads to “almost orthogonal” basis functions, and is seemingly
good enough for smaller basis sizes. The green curve is the same as the green curve in
[Figure 13b It does real orthonormalisation as it should be. The black curve is again the

same one as before in [Figure 13| (random selection).

4.4.3 The Problem of Eigenvalue Selection

As mentioned already on [page 48 both the weight-based and the gradient methods rely
on a decision, which one of the discrete eigenvalues one should use for calculating the
basis weights or the gradient norm. In practice this seems not to be a big problem,
though, since already a rough guess or some heuristic approach (as discussed there) gives
good results. This is confirmed by The blue and red curves correspond to
the gradient method, where for the blue curve (as before) the exact value with 10% of
Gaussian noise was used in the calculation, while for the red one the exact value itself
was used. They have virtually no difference, since it is already enough to know the value
up to this precision in order to decide on the correct eigenvalue in each step. Green is the
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Figure 15: Effects that different “ingredients” to be considered for the weight-based
method have on its convergence rate, see also [Subsection 4.4.2|

weight-based curve shown already in other plots; it is also based on the exact value with
10% of noise. The magenta curve instead uses the heuristic approach described on
based on assumed stationarity of the “real” eigenvalues with respect to multiple runs.
Since this strategy decides not always on the n = 3 resonance, it is a little worse at the
beginning, but interestingly it also does better in the end. The reason for this behaviour
is probably that because of the switches, a basis is chosen that is “more independent”
and thus slightly better when the calculations tend to become instable.

4.4.4 Stochastic Variational Methods versus Finite Differences

An alternative and more straight-forward approach as compared to variational methods
is a finite-difference discretisation of the Hamiltonian. This was discussed already briefly
in the introducing paragraph on Here we want to compare convergence results
for finite differences to those already shown above for the stochastic variational methods.
For the calculation, we used the same potential and scaling parameters as before, and
discretised the space interval x € [—10, 10] into uniform subintervals. The Laplacian was
discretised™] with the standard second-order central-differences stencil, which gives an
accuracy of O (h?) in the step-size h and results in a tri-diagonal matrix for the one-
dimensional case (see, for instance, section 9.2 of [20]). The convergence to the n = 3
resonance is shown in [Figure 171 It can be seen that the error follows precisely the
expected power-law of h% and that around 100,000 grid-points (corresponding to the

30See also [Example 5| above for more explanations about the finite-difference discretisation employed.
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Figure 16: The influence that the eigenvalue selection strategy has on the weight-based
and the gradient methods as discussed in [Subsection 4.4.3]

interval [-10,10] divided into pieces of length h = 2 - 10™* each) would be necessary to
achieve the maximum accuracy of 10~%, which the stochastic variational method yields.
Our actual calculations were only done up to 5,000 subintervals, since that was already
quite expensiveﬂ With the stochastic variational method much smaller matrices are
enough, with around 80 basis functions already giving the same accuracy as a finite-
difference discretisation with 100,000 grid-points. However, it must not be forgotten that
the finite-difference matrices are sparse, while the stochastic variational method produces
dense matrices. In addition to solving the matrix eigenvalue problem, it is also quite costly
to generate the stochastic basis for the latter; in fact, this is the most expensive part of
the calculation. The finite-difference matrix, on the other hand, can be built readily.
Nevertheless, note that two more orders of magnitude in the desired accuracy require
increasing the number of grid-points by a factor of ten for finite-differences, while they
require only adding 10 more basis functions in the stochastic variational method (when,
for instance, the blue curve (gradient method) in is considered).

31Note that the calculation can surely be optimised further, for instance by using vector iteration (see
in particular Definition 13.38 in [20]). If (similarly to what was assumed for the stochastic variational
method) already an approximate eigenvalue is known, this method can be used to efficiently calculate
its position more precisely.
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5 Conclusion

The main goal of the present work was the extension of the stochastic variational method
to allow the treatment of resonances, which are associated with complex eigenvalues of
quantum-mechanical systems. In this case, one is usually confronted with non-Hermitian
Hamiltonians that arise, for instance, with optical potentials or after similarity transfor-
mations, such as the complex scaling or the Zel’dovich transformations. We based our
considerations as far as possible on a rigorous mathematical foundation, since a lot of
work on resonances in the literature is of predominantly practical nature and often lacks
the desired mathematical rigour.

From the short introduction into the general theory of resonances in it be-
came particularly clear that resonance wave functions pose a difficulty within the usual
Hilbert-space formulation of quantum mechanics, since this formulation is based on spaces
of square-integrable functions (such as L?(R™)), which do not contain the resonance wave
functions of interest to us. Therefore, methods commonly used in standard quantum
mechanics are no longer appropriate. In order to circumvent this problem, we resorted
to similarity transformations such as those described in [Chapter 3| They allowed us to
transform the eigenvalue problem for resonances into an eigenvalue problem of a non-
Hermitian operator. Evidently, its eigenvalues are in general complex, but its eigenfunc-
tions are square-integrable and can thus be handled again in the usual mathematical
framework.

The stochastic variational method has proven to be quite powerful for Hermitian
problems. In this case it is based on the well-known Rayleigh-Ritz variational principle.
Obviously, the latter cannot be applied for complex eigenvalues. Therefore it was neces-
sary to derive a generalised variational principle that avoids minimisation and is based
on stationarity instead. It states that the best values for linear and non-linear parame-
ters in a parametrisation of the wave function are near a stationary point of the energy
expectation value. Consequently, the gradient with respect to those parameters has to
vanish when the correct eigenvalue is attained. Precise formulations and corresponding
proofs of this result are given in[Theorem 9| and [T'heorem 10| of [Chapter 4. Based on this
generalisation of the variational principle, also the criterion for selecting good candidate
basis functions in the stochastic variational method had to be adapted. In addition to
the stochastic selection of basis functions, we also designed a further criterion for improv-
ing the whole basis throughout the calculation. It consists in replacing basis functions
with small expansion coefficients by more promising ones. As a result, we arrived at
two particular variants of the stochastic variational method that can be applied to non-
Hermitian problems. Both turned out to perform significantly better than purely random
basis selection or a straight-forward finite-difference discretisation of the Hamiltonian.

Having arrived at these results, still a number of problems remain open with regard
to the description of quantum-mechanical resonances. In particular, the following items
could be the topic of further research:

o is unfortunately not enough to fully justify the application of complex
scaling to resonance wave functions, since it does not show analyticity of the eigen-
functions. It would be interesting to consider whether such a proof is possible. It
could possibly incorporate deeper knowledge about resonance wave functions from
scattering theory.
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As discussed during the treatment of we were not able to use the
Zel'dovich transformation for any meaningful practical results. Since the main
focus of this work was complex scaling, we did not investigate further why this
was the case and whether the problems can be fixed so that also the Zel’dovich
transformation can be applied successfully.

For simplicity and in order not to detract the focus from our work on variational
methods in the complex case, we did not try to apply exterior scaling or any other
more sophisticated variant. While that would be more complicated, it is probably
only a matter of a sufficiently diligent implementation to apply these techniques
together with our variational methods, for instance, to the square-well potential.

It would be interesting to study problems of non-Hermitian Hamiltonians containing
(complex) optical potentials (such as the ones resulting from Feshbach elimination
in multi-channel systems) from the same point of view as adopted in the present
work.

Finally, it is certainly demanding to extend our methods and their implementations
to higher-dimensional situations as well as to real-world problems of atomic, nuclear
and particle physics.
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