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Abstract

The framework of non-Hermitian quantum mechanics can be used to describe and calculate
complex resonance energies corresponding to poles of the S-matrix in scattering problems. When
a variational method is employed to solve the resulting complex eigenvalue problem, the criterion
of minimising the energy expectation can no longer be applied because of the complex energies—
instead the principle becomes a stationary one, where the gradient of the energy expectation value
with respect to all variational parameters should in theory vanish and in practice be made as small
as possible. I will describe how automatic differentiation based on operator overloading in C++
with the ADOL-C package can be used for this task. The main difficulty here lies in the fact that
complex numbers must be handled, which work not entirely out-of-the-box with ADOL-C. With
some understanding and tricks it can be made to work, though. For this particular problem, the
derivatives can also be calculated symbolically, and it turns out that both methods yield the same
results. With automatic differentiation one can then calculate also second derivatives which become
very unwieldy to handle manually.

1 The Problem

1.1 Introduction to Quantum Mechanics

The usual framework of quantum mechanics is based on functional analysis in Hilbert spaces (based on
L2(Rn) over the complex numbers as scalars), see also [8] for a general introduction to this framework.
States of a quantum system are represented by (normalised) vectors, and measurable observables by
self-adjoint or at least Hermitian operators. When a measurement is performed, the measured value will
be an eigenvalue of the operator—thus Hermiticity guarantees that all outcomes of measurements are
real numbers as one expects for physical quantities. In the so-called “Schrödinger picture” of quantum
mechanics, the time-evolution of a system is described by states changing over time according to the
famous Schrödinger equation:

i~
d

dt
ψ = Ĥψ (1)

Here, Ĥ is a special Hermitian operator corresponding to the total energy of the system (the “Hamiltonian
operator”). Usually, it is made up of two terms: One for the kinetic energy which always has the same
form and one for the potential energy which depends on the system (or external potential) one is interested
in. Thus, one has

Ĥ = − ~2

2m
∆ + V, (2)

where V : Rn → R is simply a multiplication operator describing the potential. In the following, I will
always assume that ~ = m = 1 to simplify the equations further. This is in line with the common
practice of choosing “natural units” for quantities and doesn’t restrict the underlying theory in any way.

The time-evolution of (1) can be expressed in an abstract way via the exponential of the operator

in the differential equation, e−
i
~ Ĥt, which is often called the “time-evolution operator”. It is unitary

for self-adjoint Ĥ, preserving the normalisation property of states. From this representation and also
the correlation between eigenvalues and measurements it follows that the spectrum of Ĥ is of particular
importance. In fact, via appropriate ansatz functions the solution to (1) can be expressed analytically
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in terms of the eigenfunctions of Ĥ. They correspond to “bound states” of the problem. Thus one
commonly investigates a quantum mechanical problem by solving the time-independent Schrödinger
equation instead:

Ĥψ = Eψ, (3)

which is nothing else but the eigenvalue equation of Ĥ for eigenstates ψ and corresponding eigenenergies
E. (3) is well-researched for a wide class of interesting systems.

1.2 Resonances and Complex Scaling

In contrast to “ordinary” quantum mechanics as described above, certain phenomena (resonances or
“instable states”) can be related to complex energy-eigenvalues of Ĥ. Roughly speaking, the real part of
such an eigenvalue is the energy at which the resonance state appears in experiments, and the imaginary
part is related to its average life-time. The closer to the real axis the value lies, the longer this time is (with
real energies corresponding to perfectly stable states as in the classical framework) and the sharper such
a resonance appears in scattering experiments. Resonances can be investigated from classical scattering
theory (see for instance [9, ch. 13, p. 238ff]) or by means of time-dependent calculations, but a different
and mathematically elegant approach is the use of non-Hermitian operators to solve (3) for complex
energies. See [6] for more details about this approach.

One may ask how complex energies can actually arise for an operator as in (2), which is Hermitian (at

least as long as V is real). To answer this, note that an operator like d2

dx2 is only Hermitian (“symmetric”)
as long as the boundary terms that appear from integration by parts in the L2-inner product vanish. For
functions in L2, this is the case—and there such a Hamiltonian is Hermitian. However, the eigenfunctions
corresponding to resonances do not lie in L2, instead they are only locally in L2: From the general
scattering theory it is expected that those functions behave like a plane wave

ψ(x) ∼ eikx

for x→∞ far away from the scattering centre. If the energy, which is related to the wave-number k via
E ∼ k2, is now complex such that Im (k) < 0, then |ψ(x)| → ∞ for x→∞, so that surely ψ 6∈ L2(R).

This also prevents us from applying methods based on the Hilbert space semantics of L2 directly
to calculate those eigenvalues, because they are “invisible” from within L2. To resolve this problem,
one can apply complex scaling [6, sec. 5.2, p. 120ff]: For suitable functions (which can be analytically
continued onto the complex plane) define

(Ŝθψ)(x) = ψ
(
eiθx

)
.

This is a linear and invertible map, with the inverse given as Ŝ−1θ = Ŝ−θ. Consequently, eigenvalues are

preserved when a similarity transformation based on Ŝθ is applied to Ĥ,

Ĥθ = ŜθĤŜ−θ. (4)

However, the eigenfunctions are changed by this procedure, and when Ĥψ = Eψ was the case before
scaling, now Ĥθψθ = Eψθ where ψθ = Ŝθψ. Note also that for the asymptotic behaviour of the scaled
resonance eigenfunction we now have

ψθ(x) ∼ exp
(
ieiθkx

)
→ 0

for x → ∞ as long as Im
(
eiθk

)
> 0. In other words, by the transformation (4) we get a modified

operator Ĥθ which still has the same complex eigenvalues we’re interested in but whose eigenfunctions
are now again in L2, as long as the “scaling angle” θ is large enough (larger than the argument of k to
be precise). It is easy to see that for a Hamiltonian according to (2) the scaled version is

Ĥθ = −1

2
e−2iθ∆ + V

(
eiθx

)
.

This is still a “symmetric” but now also genuinely complex operator, thus no longer Hermitian (which
allows it to have complex eigenvalues even inside the Hilbert space L2 we work in).
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1.3 The Variational Method

For any state ψ, which needs not be an eigenstate, one can calculate the expectation value of the
Hamiltonian (the “mean energy” E) via the so-called Rayleigh quotient :

E = R(ψ) =

〈
ψ|Ĥ|ψ

〉
〈ψ|ψ〉

(5)

It is clear that if (3) is fulfilled, then E = E and thus R(ψ) gives just the energy level for every
eigenstate. The Rayleigh-Ritz variational principle states now that if E0 is the lowest energy level of Ĥ,
then R(ψ) ≥ E0 for all possible (also non-eigen)states ψ. This can be seen easily because for a Hermitian
Hamiltonian the eigenstates usually form an orthonormal basis in which ψ can be expanded:

ψ =
∑
i

ciψi ⇒
〈
ψ|Ĥ|ψ

〉
=
∑
i

|ci|2Ei ≥ E0 ·
∑
i

|ci|2 = E0 〈ψ|ψ〉

Thus, at least to calculate E0, a common method in quantum mechanics is to choose some ansatz for
ψ(αi) containing a number of parameters αi and then simply minimising R(ψ(αi)) over the set of possible
parameter values. This gives good approximations to the ground state energy E0 (and an exact upper
bound) if the set of possible functions ψ(αi) is rich enough. This is described in [3, ch. 43, p. 302ff] and
many other introductory texts about quantum mechanics.

For our special non-Hermitian setting however, we can’t apply this method directly because for
obvious reasons with complex energies, there’s no longer any way to decide which set of parameters is
“better” based on “minimising” something. However, one can find a remedy to this problem. First, we
have to define a new “inner product” termed the c-product by Moiseyev, see [6, ch. 6, p. 174ff]:

(φ|ψ) =

∫
Rn

φ(x)ψ(x) dx (6)

The difference to the ordinary inner product in L2 is that here none of the factors is conjugated. This
leads to the result that it actually isn’t a proper (positive-definite) inner product and also that there
are non-trivial self-orthogonal vectors. However, the important property is that with (6) also a complex
scaled Hamiltonian is still “symmetric” in the sense that(

φ|Ĥθψ
)

=
(
Ĥθφ|ψ

)
=
(
φ|Ĥθ|ψ

)
,

which can be seen easily by a short calculation and integration by parts. Second, one can derive a
generalised variational principle that also holds true for complex scaled Hamiltonians based on the c-
product:

Theorem 1. Let ψ(α) ∈ Hk(Rn) be a parameter-dependent wave function, where α ∈ C. Let ψ(·) be
differentiable and assume that Ĥθψ(α0) = Eψ(α0), ‖ψ(α)‖Hk = 1 for all α considered (normalise as
necessary), and (ψ(α0)|ψ(α0)) 6= 0. We consider the Rayleigh quotient in the c-product

R(ψ) =

(
ψ|Ĥθ|ψ

)
(ψ|ψ)

now as function R(α) = R(ψ(α)). Then
∂R(α0)

∂α
= 0. (7)

In other words, instead of the one-sided bound we at least get a stationarity property of the energy
expectation for eigenstates of the form

R(ψ + εδψ) = E +O
(
ε2
)
.

Proof. See [6, (7.17), p. 214] or [5].
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A first application of Theorem 1 is the case of linear parameters (in other words, using a fixed basis
with unknown coefficients as ansatz for ψ(αi)). There, it can be seen that the resulting condition can be
reformulated as generalised eigenvalue problem for matrices: Let (χi)

n
i=1 be some fixed basis, and denote

by

Hij =
(
χi|Ĥθ|χj

)
, Sij = (χi|χj) (8)

the Hamiltonian and overlap matrix elements. Then the stationarity condition (7) is equivalent to solving

Ha = ESa

as generalised eigenvalue problem for the coefficient vector a ∈ Cn and the resonance energy E ∈ C. The
remaining question is how to choose the basis of χ’s. A method that has been proven to be efficient in
practice for certain problems is the stochastic variational method [10], whose main idea is to enlarge the
basis step by step: If it currently has length k, create randomly a set of candidate functions for χk+1

and then pick that one to actually add which minimises the energy expectation value—in our case based
on Theorem 1, a good generalisation seems to be to pick that one which produces the smallest norm of
the gradient of R with respect to all non-linear parameters that specify the basis functions. To further
concretise the method, a good choice as basis functions are Gaussians of the form

χα,µ(x) = e−α|x−µ|
2

. (9)

They are quite flexible to approximate both regions of a target function where it is smoothly varying
over long distances (with small α’s) as well as points of sharp changes (with large α’s and µ’s to localise a
basis function there). Furthermore, they are nice, smooth, analytic functions, for which the expressions
required in (8) (at least the kinetic part of the Hamiltonian which does not depend on the specific
problem at hand) can be evaluated symbolically as Gaussian integrals.

1.4 An Example Problem

For my numerical calculations, I used a simple one-dimensional potential problem with the Hamiltonian
(2) and the potential

V (x) =

(
1

2
x2 − J

)
e−λx

2

, (10)

where x ∈ R and the parameters were chosen as J = 0.8, and λ = 0.1. For this problem, the correct
resonance energies are already published in [4] and can be used to check my own calculation. Note though
that in this paper, the potential used has an additional offset J added to it in comparison to (10). This
results in a corresponding shift of the eigenvalues, which has to be taken into account when comparing
my results to theirs. The potential (10) as well as its eigenvalues are shown for a quick overview in
Figure 1. These plots are taken from [5], which gives some more details about them.

2 Calculating Derivatives

It should be clear that calculating derivatives of the Rayleigh quotient (5) is a very important ingredient
in order to make the variational method work. For my code I implemented two different methods, which
gave the same results and thus confirmed that both implementations are viable. The high-level code is
implemented using GNU Octave [1], while both differentiation methods described in the following yield
native code. These routines were then accessed from Octave using its C++ interface based on so-called
oct-files.

2.1 Manual Symbolic Derivatives

Since the expressions appearing in (8) are mostly only Gaussian integrals that can be evaluated sym-
bolically, the resulting matrix elements can also be differentiated symbolically. For the potential part
of the Hij matrix elements, symbolic integration is not possible but at least the integrand can again be
differentiated symbolically, so that also the derivatives of those expressions can be calculated by applying
numerical quadrature on the differentiated integrands. This is described in more details in [5]. Once the

4



-1

-0.5

0

0.5

1

1.5

2

-15 -10 -5 0 5 10 15

V
(
x
)

x

(a) Potential (10) with bound state.

-40

-35

-30

-25

-20

-15

-10

-5

0

-1 0 1 2 3 4

I
m
 
E

Re E

(b) Eigenvalues with comparison results.

Figure 1: The potential (10) with its single bound-state energy on the left, and the corresponding
eigenvalues on the right. Green crosses mark the values given in [4], which are available for resonances
with odd index.

derivatives of all matrix elements can be calculated, it is easy enough to use the linear structure and
the quotient rule to find the derivatives of the full expression in (5): It is a little tedious to fit all pieces
together correctly, but it can be done—in my particular case, I used Maxima [2] to perform symbolic
differentiation, since the expressions involved grow quite long. From Maxima, I exported the derivative
expressions as Fortran code using the fortran routine, and the resulting code was then compiled and
used from a C++ oct-file routine using Fortran’s interface to C, aka ISO C BINDING. This C++ code
then assembles the full derivative from the individual matrix elements and does the quadrature, returning
everything to Octave.

2.2 Automatic Differentiation

The same derivatives can also be calculated using automatic differentiation, which allows me to get rid of
the manual assembly of the subexpressions as well as calculating the symbolic derivatives of the matrix
elements myself. I used ADOL-C [7] for this task, which is based on operator-overloading in C++.
The automatic differentiation was performed in reverse mode based on the high-level driver function
jacobian of ADOL-C, because for calculating the gradient of our scalar expectation value, the number
of independent variables is much larger than the number of dependent ones and thus the reverse mode
is more efficient than the forward mode. Since ADOL-C is based on C++, it is straight-forward to use
it from code that is then compiled into an oct-file to be used from Octave. All that needs to be done
is implementing (5) itself in C++, then the gradient of this expression is deduced by ADOL-C upon
request. This is of course much easier than manually building up the derivatives, and in particular once
the code is set up correctly, it is trivial to calculate also the Hessian of (5)—which would require much
more tedious assembly of expressions when done manually (although that would be possible in theory,
too). The reader is referred to [7] or the ADOL-C manual [11] for more details of how ADOL-C works
and can be used in general, but in the following I will describe a particular difficulty (and its solution) I
faced for my problem: The use of complex numbers for dependent variables.1

In order to switch existing C++ code over to ADOL-C, (real) floating point numbers must be given the
type adouble instead of double, which is a special class that implements the steps necessary for automatic
differentiation in overloaded operators and mathematical functions. For complex numbers in C++, the
template class std::complex<T> of the STL can be used (and is in my case)—this class implements
complex number operations for arbitrary underlying numerical types T, which are used for the complex

1The independent variables were still real (in my case, the parameters α and µ of (9)), so no complex derivatives as in
Cauchy-Riemann differential equations are involved.
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number’s real and imaginary parts. Thus ordinarily, one would use for instance std::complex<double>

as type for complex numbers in calculations, and to allow differentiating them with respect to some real
independent variables, I had to use std::complex<adouble>. Since std::complex already “reduces”
the complex number operations to corresponding expressions involving just real quantities (the real and
imaginary parts), this mostly plays very well together with adouble to differentiate those expressions
later with respect to our independent variables.

Example 1. Let t ∈ R be a parameter and define a = 2t+ 5i, b = −t+ t
2 i. Then

x = x(t) =
a

b
+ ab ∈ C

is a parameter-dependent complex number. The operations involved in the definition of x are simple
enough to allow ADOL-C to differentiate it right out-of-the-box. The corresponding code to calculate the
derivative dx

dt ∈ C is shown in Listing 1. Everything related to ADOL-C is marked in red to emphasise
the steps necessary. We have the usual boiler-plate code related to first tracing the execution and then
replaying the resulting “tape” to calculate the derivatives, but also some steps are required in order to
construct a and b from t via the active variable myT first, and to read out the real and imaginary parts
of x into re and im after the calculation. Since ADOL-C doesn’t know complex numbers natively, we
have to pretend that there are two (but real) output variables. The actual calculation with the complex
numbers (which is the assignment to x in this example) is straight-forward, though, for this simple
expression. It can be easily verified (since the derivative can also be calculated symbolically) that the
shown code gives correct results.

Example 2. One important part of my calculations with (9) is of course the exponential function.2 This
gives us another example: Let again be t ∈ R a single parameter, and define a = 2t − ti. We want to
calculate x = ea this time. The naive code to do this (only the relevant part performing the calculation)
is shown in Listing 2. However, this code fails to compile3 with the following error:

complex:738:52: error: no matching function for call to polar(adub, adouble)

The relevant piece of code from gcc’s implementation of the complex exponential function is:

return std::polar(exp(z.real()), z.imag());

This uses the fact that the complex exponential function is directly related to polar coordinates for
complex numbers, since with

z = a+ bi ⇒ ez = ea · ebi = reiφ

it is clear that the magnitude of ez is ea and the argument is b. However, digging into the internals of
ADOL-C it becomes evident that it not only uses adouble to represent numerical values with operator
overloading added, but also adub for internal purposes which is used to represent “temporary results”
of operations. Both classes are siblings to each other in the inheritance hierarchy, being derived from a
common base class badouble and with appropriate conversion routines to allow, for instance, assigning
an adub result to an adouble variable. This makes the existence of adub mostly hidden to the user,
but in the concrete case above it surfaced because exp(z.real()) is of type adub while z.imag() is
adouble—but the template implementation of std::polar can only be resolved if both arguments are
of the same type. To resolve the issue, one can rewrite Listing 2 into the code shown in Listing 3, which
duplicates the implementation of std::exp but forces a conversion of the adub intermediate result back
to adouble. This works perfectly fine, and also for this example the result of automatic differentiation
can of course be easily verified in comparison to the known symbolical derivative.

3 Results

Both methods described above work well to calculate the gradient of the energy expectation value (5) with
respect to the non-linear variational parameters, and give consistent results. The symbolic calculation

2It is not necessary to evaluate it at complex values for my application, but my code is implemented to support that.
3At least for ADOL-C version 2.4.1 and with g++ 4.7.2, which is the setting I used.
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/∗∗
∗ Perform a s imple c a l c u l a t i o n wi th complex numbers which
∗ doesn ’ t r e qu i r e any t r i c k s to do wi th ADOL−C.
∗ @param t Value o f the independent v a r i a b l e a t which to e va l ua t e .
∗ @return The t−d e r i v a t i v e o f the func t i on va lue t he r e .
∗/

stat ic std : : complex<double>
s impleTest ( const double t )
{

/∗ Firs t , ADOL−C ” tapes ” the execu t i on o f the c a l c u l a t i o n code . This
records a l l opera t ions , and a l l ows to l a t e r ” r ep l ay ” them to perform
automatic d i f f e r e n t i a t i o n in a v a r i e t y o f modes and con f i g u r a t i on s . ∗/

trace on ( 1 ) ;

adouble myT;
myT <<= t ;
std : : complex<adouble> a , b ;
a = std : : complex<adouble> ( 2 . 0 ∗ myT, 5 . 0 ) ;
b = std : : complex<adouble> (−myT, myT / 2 . 0 ) ;

std : : complex<adouble> x ;
x = a / b + a ∗ b ;

double re , im ;
std : : real ( x ) >>= re ;
std : : imag ( x ) >>= im ;

trace off ( ) ;

/∗ Now we have the tape and can a c t u a l l y r ep l ay i t to c a l c u l a t e the d e r i v a t i v e
o f the r e s u l t wi th r e s p e c t to t . Behind−the−scenes t h i s works by
assuming ∗ two∗ dependent v a r i a b l e s ( r e a l and imaginary par t ) and
c a l c u l a t i n g the ( r e a l ) Jacobian o f t h i s two−dimensiona l f unc t i on . Later
on , both coord ina t e s are again combined to a s i n g l e but complex−va lued
d e r i v a t i v e r e s u l t . ∗/

double∗ j a c [ 2 ] ;
j a c [ 0 ] = new double ( ) ;
j a c [ 1 ] = new double ( ) ;
jacobian (1 , 2 , 1 , &t , j a c ) ;

std : : complex<double> r e s (∗ j a c [ 0 ] , ∗ j a c [ 1 ] ) ;

delete j a c [ 0 ] ;
delete j a c [ 1 ] ;

return r e s ;
}

Listing 1: Simple function using ADOL-C on complex numbers for Example 1.
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std : : complex<adouble> a ;
a = std : : complex<adouble> ( 2 . 0 ∗ myT, −myT) ;

std : : complex<adouble> x ;
x = std : : exp ( a ) ;

Listing 2: Naive implementation of Example 2.

std : : complex<adouble> a ;
a = std : : complex<adouble> ( 2 . 0 ∗ myT, −myT) ;

std : : complex<adouble> x ;
const adouble magn = exp ( std : : real ( a ) ) ;
const adouble arg = std : : imag ( a ) ;
x = std : : polar (magn , arg ) ;

Listing 3: Working implementation of Example 2.

is however more efficient by a factor of about 42,4 but that is no surprise since it is clear that most of
the time a symbolic derivative, if it is possible and feasible, is best. The big advantage of automatic
differentiation is that it is easier to implement and can also calculate second derivatives without much
additional effort, which would be very hard and tedious to get correct with symbolic expressions.

On a higher level, the stochastic variational method I developed in [5] gives good results as can be seen
from Figure 2a: It shows how a particular resonance eigenvalue (for the n = 3 resonance) converges to the
exact value with increasing length of the stochastic basis. Black is the curve corresponding to completely
random basis selection (i. e. without applying any selection criterion like minimising the gradient norm),
blue is the described method based on the gradient norm and green is a different method I propose
(see [5] for the details). One can easily see that both methods outperform random basis selection by a
large margin. In Figure 2b the same error is shown if the Hamiltonian Ĥθ is approximated using finite
differences and the eigenvalues of the resulting (tri-diagonal) matrix are calculated directly. It can be
seen that in order to achieve the maximum accuracy of about 10−8 of the stochastic variational method
with N = 80 basis functions, about 100,000 grid-points would be necessary. For higher-dimensional
problems the finite-difference approximation would become even much more expensive. Note also in
particular that the basis length axis is not logarithmic in Figure 2a while it is in Figure 2b.
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